» Articles » PMID: 27249418

DYT1 Dystonia Increases Risk Taking in Humans

Overview
Journal Elife
Specialty Biology
Date 2016 Jun 2
PMID 27249418
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

It has been difficult to link synaptic modification to overt behavioral changes. Rodent models of DYT1 dystonia, a motor disorder caused by a single gene mutation, demonstrate increased long-term potentiation and decreased long-term depression in corticostriatal synapses. Computationally, such asymmetric learning predicts risk taking in probabilistic tasks. Here we demonstrate abnormal risk taking in DYT1 dystonia patients, which is correlated with disease severity, thereby supporting striatal plasticity in shaping choice behavior in humans.

Citing Articles

Inhibition of endoplasmic reticulum stress reverses synaptic plasticity deficits in striatum of DYT1 dystonia mice.

Cai H, Ni L, Hu X, Ding X Aging (Albany NY). 2021; 13(16):20319-20334.

PMID: 34398825 PMC: 8436893. DOI: 10.18632/aging.203413.


Opposing patterns of abnormal D1 and D2 receptor dependent cortico-striatal plasticity explain increased risk taking in patients with DYT1 dystonia.

Gilbertson T, Arkadir D, Douglas Steele J PLoS One. 2020; 15(5):e0226790.

PMID: 32365120 PMC: 7197855. DOI: 10.1371/journal.pone.0226790.


Maladaptive striatal plasticity and abnormal reward-learning in cervical dystonia.

Gilbertson T, Humphries M, Douglas Steele J Eur J Neurosci. 2019; 50(7):3191-3204.

PMID: 30955204 PMC: 6900037. DOI: 10.1111/ejn.14414.


Trihexyphenidyl rescues the deficit in dopamine neurotransmission in a mouse model of DYT1 dystonia.

Downs A, Fan X, Donsante C, Jinnah H, Hess E Neurobiol Dis. 2019; 125:115-122.

PMID: 30707939 PMC: 6863078. DOI: 10.1016/j.nbd.2019.01.012.


Perceptual decisions based on previously learned information are independent of dopaminergic tone.

Perugini A, Basso M J Neurophysiol. 2017; 119(3):849-861.

PMID: 29167328 PMC: 5899318. DOI: 10.1152/jn.00761.2017.

References
1.
Schultz W, Dayan P, Montague P . A neural substrate of prediction and reward. Science. 1997; 275(5306):1593-9. DOI: 10.1126/science.275.5306.1593. View

2.
Baron A . Postdiscrimination gradients of human subjects on a tone continuum. J Exp Psychol. 1973; 101(2):337-42. DOI: 10.1037/h0035206. View

3.
Collins A, Frank M . Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol Rev. 2014; 121(3):337-66. DOI: 10.1037/a0037015. View

4.
Shohamy D, Myers C, Grossman S, Sage J, Gluck M, Poldrack R . Cortico-striatal contributions to feedback-based learning: converging data from neuroimaging and neuropsychology. Brain. 2004; 127(Pt 4):851-9. DOI: 10.1093/brain/awh100. View

5.
Rutledge R, Lazzaro S, Lau B, Myers C, Gluck M, Glimcher P . Dopaminergic drugs modulate learning rates and perseveration in Parkinson's patients in a dynamic foraging task. J Neurosci. 2009; 29(48):15104-14. PMC: 3376711. DOI: 10.1523/JNEUROSCI.3524-09.2009. View