» Articles » PMID: 27244241

Cell Type Specificity of Neurovascular Coupling in Cerebral Cortex

Abstract

Identification of the cellular players and molecular messengers that communicate neuronal activity to the vasculature driving cerebral hemodynamics is important for (1) the basic understanding of cerebrovascular regulation and (2) interpretation of functional Magnetic Resonance Imaging (fMRI) signals. Using a combination of optogenetic stimulation and 2-photon imaging in mice, we demonstrate that selective activation of cortical excitation and inhibition elicits distinct vascular responses and identify the vasoconstrictive mechanism as Neuropeptide Y (NPY) acting on Y1 receptors. The latter implies that task-related negative Blood Oxygenation Level Dependent (BOLD) fMRI signals in the cerebral cortex under normal physiological conditions may be mainly driven by the NPY-positive inhibitory neurons. Further, the NPY-Y1 pathway may offer a potential therapeutic target in cerebrovascular disease.

Citing Articles

Type-I nNOS neurons orchestrate cortical neural activity and vasomotion.

Turner K, Turner K, Brockway D, Brockway D, Hossain M, Griffith K bioRxiv. 2025; .

PMID: 39896560 PMC: 11785022. DOI: 10.1101/2025.01.21.634042.


Modeling of Blood Flow Dynamics in Rat Somatosensory Cortex.

Battini S, Cantarutti N, Kotsalos C, Roussel Y, Cattabiani A, Arnaudon A Biomedicines. 2025; 13(1).

PMID: 39857656 PMC: 11761867. DOI: 10.3390/biomedicines13010072.


Correlation of zero echo time functional MRI with neuronal activity in rats.

Valjakka J, Paasonen J, Salo R, Paasonen E, Stenroos P, Gureviciene I J Cereb Blood Flow Metab. 2025; 271678X251314682.

PMID: 39846159 PMC: 11758440. DOI: 10.1177/0271678X251314682.


Mapping Activity and Functional Organisation of the Motor and Visual Pathways Using ADC-fMRI in the Human Brain.

Nguyen-Duc J, de Riedmatten I, Spencer A, Perot J, Olszowy W, Jelescu I Hum Brain Mapp. 2025; 46(2):e70110.

PMID: 39835608 PMC: 11747996. DOI: 10.1002/hbm.70110.


Control of neurovascular coupling by ATP-sensitive potassium channels.

Bowen R, York N, Padawer-Curry J, Bauer A, Lee J, Nichols C J Cereb Blood Flow Metab. 2025; :271678X251313906.

PMID: 39819176 PMC: 11748405. DOI: 10.1177/0271678X251313906.


References
1.
Beltramo R, DUrso G, Maschio M, Farisello P, Bovetti S, Clovis Y . Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nat Neurosci. 2013; 16(2):227-34. DOI: 10.1038/nn.3306. View

2.
Schoenenberger P, Grunditz A, Rose T, Oertner T . Optimizing the spatial resolution of Channelrhodopsin-2 activation. Brain Cell Biol. 2008; 36(1-4):119-27. DOI: 10.1007/s11068-008-9025-8. View

3.
Rosenblum W, Weinbrecht P, Nelson G . Propagated constriction in mouse pial arterioles: possible role of endothelium in transmitting the propagated response. Microcirc Endothelium Lymphatics. 1990; 6(4-5):369-87. View

4.
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P . Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A. 2003; 100(24):13940-5. PMC: 283525. DOI: 10.1073/pnas.1936192100. View

5.
Lecrux C, Toussay X, Kocharyan A, Fernandes P, Neupane S, Levesque M . Pyramidal neurons are "neurogenic hubs" in the neurovascular coupling response to whisker stimulation. J Neurosci. 2011; 31(27):9836-47. PMC: 6703330. DOI: 10.1523/JNEUROSCI.4943-10.2011. View