Seres M, Spacayova K, Sulova Z, Spaldova J, Breier A, Pavlikova L
Cancers (Basel). 2025; 17(2).
PMID: 39858030
PMC: 11763799.
DOI: 10.3390/cancers17020248.
Li X, Rasul A, Sharif F, Hassan M
Front Oncol. 2024; 14:1376633.
PMID: 38590645
PMC: 10999569.
DOI: 10.3389/fonc.2024.1376633.
Huang C, Yang T, Lin K
J Biomed Sci. 2024; 31(1):16.
PMID: 38280996
PMC: 10821541.
DOI: 10.1186/s12929-024-01003-y.
Lam V, Roleder C, Liu T, Bruss N, Best S, Wang X
Mol Cancer Ther. 2023; 22(9):1040-1051.
PMID: 37420267
PMC: 10525033.
DOI: 10.1158/1535-7163.MCT-22-0762.
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B
MedComm (2020). 2023; 4(3):e261.
PMID: 37143582
PMC: 10152985.
DOI: 10.1002/mco2.261.
TAK-981, a SUMOylation inhibitor, suppresses AML growth immune-independently.
Kim H, Kim B, Dao T, Kim J, Kim Y, Son H
Blood Adv. 2023; 7(13):3155-3168.
PMID: 36809797
PMC: 10338213.
DOI: 10.1182/bloodadvances.2022007956.
Control of protein stability by post-translational modifications.
Lee J, Hammaren H, Savitski M, Baek S
Nat Commun. 2023; 14(1):201.
PMID: 36639369
PMC: 9839724.
DOI: 10.1038/s41467-023-35795-8.
The Four Homeostasis Knights: In Balance upon Post-Translational Modifications.
Pieroni S, Castelli M, Piobbico D, Ferracchiato S, Scopetti D, Di-Iacovo N
Int J Mol Sci. 2022; 23(22).
PMID: 36430960
PMC: 9696182.
DOI: 10.3390/ijms232214480.
Cancer-Associated Dysregulation of Sumo Regulators: Proteases and Ligases.
Lara-Urena N, Jafari V, Garcia-Dominguez M
Int J Mol Sci. 2022; 23(14).
PMID: 35887358
PMC: 9316396.
DOI: 10.3390/ijms23148012.
PIAS1-mediated SUMOylation of influenza A virus PB2 restricts viral replication and virulence.
Wang G, Zhao Y, Zhou Y, Jiang L, Liang L, Kong F
PLoS Pathog. 2022; 18(4):e1010446.
PMID: 35377920
PMC: 9009768.
DOI: 10.1371/journal.ppat.1010446.
Insights in Post-Translational Modifications: Ubiquitin and SUMO.
Salas-Lloret D, Gonzalez-Prieto R
Int J Mol Sci. 2022; 23(6).
PMID: 35328702
PMC: 8952880.
DOI: 10.3390/ijms23063281.
Sumoylation in Physiology, Pathology and Therapy.
Sahin U, de The H, Lallemand-Breitenbach V
Cells. 2022; 11(5).
PMID: 35269436
PMC: 8909597.
DOI: 10.3390/cells11050814.
Therapeutic Potential of Targeting the SUMO Pathway in Cancer.
Kukkula A, Ojala V, Mendez L, Sistonen L, Elenius K, Sundvall M
Cancers (Basel). 2021; 13(17).
PMID: 34503213
PMC: 8431684.
DOI: 10.3390/cancers13174402.
Novel insights into the impact of the SUMOylation pathway in hematological malignancies (Review).
Wang L, Qian J, Yang Y, Gu C
Int J Oncol. 2021; 59(3).
PMID: 34368858
PMC: 8360622.
DOI: 10.3892/ijo.2021.5253.
SUMO and SUMOylation Pathway at the Forefront of Host Immune Response.
T K S, Joshi G, Arya P, Mahajan V, Chaturvedi A, Mishra R
Front Cell Dev Biol. 2021; 9:681057.
PMID: 34336833
PMC: 8316833.
DOI: 10.3389/fcell.2021.681057.
Targeting the MYC Ubiquitination-Proteasome Degradation Pathway for Cancer Therapy.
Sun X, Li Y, Sears R, Dai M
Front Oncol. 2021; 11:679445.
PMID: 34178666
PMC: 8226175.
DOI: 10.3389/fonc.2021.679445.
SUMO and Transcriptional Regulation: The Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies.
Boulanger M, Chakraborty M, Tempe D, Piechaczyk M, Bossis G
Molecules. 2021; 26(4).
PMID: 33562565
PMC: 7915335.
DOI: 10.3390/molecules26040828.
An in vitro Förster resonance energy transfer-based high-throughput screening assay identifies inhibitors of SUMOylation E2 Ubc9.
Wang Y, Liu X, Way G, Madarha V, Zhou Q, Yang D
Acta Pharmacol Sin. 2020; 41(11):1497-1506.
PMID: 32341466
PMC: 7656853.
DOI: 10.1038/s41401-020-0405-7.
Quantitative SUMO proteomics identifies PIAS1 substrates involved in cell migration and motility.
Li C, McManus F, Plutoni C, Pascariu C, Nelson T, Delsin L
Nat Commun. 2020; 11(1):834.
PMID: 32047143
PMC: 7012886.
DOI: 10.1038/s41467-020-14581-w.
Cross-talk between Myc and p53 in B-cell lymphomas.
Yu L, Yu T, Young K
Chronic Dis Transl Med. 2020; 5(3):139-154.
PMID: 31891126
PMC: 6926120.
DOI: 10.1016/j.cdtm.2019.08.001.