» Articles » PMID: 27220430

Vitamin D Interferes with Glucocorticoid Responsiveness in Human Peripheral Blood Mononuclear Target Cells

Overview
Publisher Springer
Specialty Biology
Date 2016 May 26
PMID 27220430
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Glucocorticoids (GCs) are widely used in the treatment of inflammatory and autoimmune diseases; however, patients are often resistant to GC effects. Current studies indicate that vitamin D reduces the risk or modifies the course of autoimmune diseases posing vitamin D supplementation as a prevention or therapeutic option. Herein, we investigated whether vitamin D can modify the response to GCs at the molecular level. To this end, peripheral blood mononuclear cells (PBMCs) were isolated from healthy vitamin D-deficient women and incubated with either the active metabolite 1,25(OH)D (VitD) for 11 days or dexamethasone (Dex) for the last 2 days in the presence or absence of VitD. Ex vivo GC sensitivity was assessed by the expression of the glucocorticoid receptor (GR) responsive gene GILZ with RT-PCR. Long-term incubation of PBMCs with VitD significantly decreased the Dex-induced augmentation of GILZ expression. Since the intracellular concentration of GR and the GR nuclear translocation are critical determinants of GC sensitivity, we next evaluated the effect of VitD on these factors. RT-PCR and western-blot analysis revealed that VitD reduced the expression of GR. This effect was abolished by the HDAC-specific inhibitor trichostatin A, implying that HDAC was implicated in this effect. Moreover, NCoR1 mRNA was significantly decreased upon treatment with VitD either alone or as pre-treatment to Dex, suggesting that a possible increase in expression of this co-repressor was not involved. In addition, immunofluorescence analysis showed that VitD hindered the Dex-induced GRα nuclear translocation, an effect verified by subcellular fractionation and western-blot experiments. To further explore the underpinning mechanism, we examined the potential of VitD to: (1) strengthen the FK506-binding protein 5 (FKBP5) negative feedback loop and (2) modify the phosphorylation status of GR. Remarkably, VitD decreased FKBP5 expression and decreased phosphorylation at Ser211, while enhancing phosphorylation of GR at Ser203. Overall, VitD decreases the ex vivo GC sensitivity and this effect is, at least in part, attributed both to decrease of GR expression owing to a mechanism that engages HDAC and inhibition of GR translocation to nucleus via differential modulation of the phosphorylation state of GR. Our study provides, for the first time, evidence that long-term action of VitD induces GC resistance in PBMCs from healthy volunteers and offers a possible mechanistic basis for VitD-triggered attenuation of GC effects.

Citing Articles

Estrogen Receptor Subtypes Elicit a Distinct Gene Expression Profile of Endothelial-Derived Factors Implicated in Atherosclerotic Plaque Vulnerability.

Nasiri-Ansari N, Spilioti E, Kyrou I, Kalotychou V, Chatzigeorgiou A, Sanoudou D Int J Mol Sci. 2022; 23(18).

PMID: 36142876 PMC: 9506323. DOI: 10.3390/ijms231810960.


Methylprednisolone stimulated gene expression (GILZ, MCL-1) and basal cortisol levels in multiple sclerosis patients in relapse are associated with clinical response.

Evangelopoulos M, Nasiri-Ansari N, Kassi E, Papadopoulou A, Evangelopoulos D, Moutsatsou P Sci Rep. 2021; 11(1):19462.

PMID: 34593869 PMC: 8484573. DOI: 10.1038/s41598-021-98868-y.


Can Vitamins, as Epigenetic Modifiers, Enhance Immunity in COVID-19 Patients with Non-communicable Disease?.

Singh V Curr Nutr Rep. 2020; 9(3):202-209.

PMID: 32661859 PMC: 7356139. DOI: 10.1007/s13668-020-00330-4.


Orexin-A Exerts Equivocal Role in Atherosclerosis Process Depending on the Duration of Exposure: In Vitro Study.

Nasiri Ansari N, Spentza F, Dimitriadis G, Daskalopoulou A, Karapanagioti A, Siasos G Nutrients. 2019; 12(1).

PMID: 31878149 PMC: 7019720. DOI: 10.3390/nu12010053.


Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice.

Nasiri-Ansari N, Dimitriadis G, Agrogiannis G, Perrea D, Kostakis I, Kaltsas G Cardiovasc Diabetol. 2018; 17(1):106.

PMID: 30049285 PMC: 6063004. DOI: 10.1186/s12933-018-0749-1.


References
1.
Miller A, Webb M, Copik A, Wang Y, Johnson B, Kumar R . p38 Mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. Mol Endocrinol. 2005; 19(6):1569-83. DOI: 10.1210/me.2004-0528. View

2.
Galliher-Beckley A, Cidlowski J . Emerging roles of glucocorticoid receptor phosphorylation in modulating glucocorticoid hormone action in health and disease. IUBMB Life. 2009; 61(10):979-86. DOI: 10.1002/iub.245. View

3.
Urry Z, Chambers E, Xystrakis E, Dimeloe S, Richards D, Gabrysova L . The role of 1α,25-dihydroxyvitamin D3 and cytokines in the promotion of distinct Foxp3+ and IL-10+ CD4+ T cells. Eur J Immunol. 2012; 42(10):2697-708. PMC: 3471131. DOI: 10.1002/eji.201242370. View

4.
Webster J, Tonelli L, Sternberg E . Neuroendocrine regulation of immunity. Annu Rev Immunol. 2002; 20:125-63. DOI: 10.1146/annurev.immunol.20.082401.104914. View

5.
DAdamio F, Zollo O, Moraca R, Ayroldi E, Bruscoli S, Bartoli A . A new dexamethasone-induced gene of the leucine zipper family protects T lymphocytes from TCR/CD3-activated cell death. Immunity. 1998; 7(6):803-12. DOI: 10.1016/s1074-7613(00)80398-2. View