» Articles » PMID: 27183566

Mechanism and Regulation of Protein Synthesis in Saccharomyces Cerevisiae

Overview
Journal Genetics
Specialty Genetics
Date 2016 May 17
PMID 27183566
Citations 77
Authors
Affiliations
Soon will be listed here.
Abstract

In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.

Citing Articles

The Translation Initiation Factor eIF2Bα Regulates Development, Stress Response, Amylase Production, and Kojic Acid Synthesis in the Fungus Aspergillus oryzae.

Liu Y, Chen Z, Chang C, Lin Y, Zheng G, Zhang F Curr Microbiol. 2025; 82(2):70.

PMID: 39756002 DOI: 10.1007/s00284-024-04051-7.


Cellular translational enhancer elements that recruit eukaryotic initiation factor 3.

Koubek J, Kaur J, Bhandarkar S, Lewis C, Niederer R, Stanciu A RNA. 2024; 31(2):193-207.

PMID: 39626887 PMC: 11789482. DOI: 10.1261/rna.080310.124.


Stress-Induced Eukaryotic Translational Regulatory Mechanisms.

Mir D, Ma Z, Horrocks J, Rogers A J Clin Med Sci. 2024; 8(2).

PMID: 39364184 PMC: 11448810.


Pleiotropic effects of PAB1 deletion: Extensive changes in the yeast proteome, transcriptome, and translatome.

Mangkalaphiban K, Ganesan R, Jacobson A PLoS Genet. 2024; 20(9):e1011392.

PMID: 39236083 PMC: 11407637. DOI: 10.1371/journal.pgen.1011392.


The RNA Helicase Ded1 from Yeast Is Associated with the Signal Recognition Particle and Is Regulated by SRP21.

Yeter-Alat H, Belgareh-Touze N, Le Saux A, Huvelle E, Mokdadi M, Banroques J Molecules. 2024; 29(12).

PMID: 38931009 PMC: 11206880. DOI: 10.3390/molecules29122944.


References
1.
Sokabe M, Yao M, Sakai N, Toya S, Tanaka I . Structure of archaeal translational initiation factor 2 betagamma-GDP reveals significant conformational change of the beta-subunit and switch 1 region. Proc Natl Acad Sci U S A. 2006; 103(35):13016-21. PMC: 1559745. DOI: 10.1073/pnas.0604165103. View

2.
Zuk D, Jacobson A . A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. EMBO J. 1998; 17(10):2914-25. PMC: 1170632. DOI: 10.1093/emboj/17.10.2914. View

3.
Hekman K, Yu G, Brown C, Zhu H, Du X, Gervin K . A conserved eEF2 coding variant in SCA26 leads to loss of translational fidelity and increased susceptibility to proteostatic insult. Hum Mol Genet. 2012; 21(26):5472-83. PMC: 3516132. DOI: 10.1093/hmg/dds392. View

4.
Ptushkina M, von der Haar T, VASILESCU S, Frank R, Birkenhager R, McCarthy J . Cooperative modulation by eIF4G of eIF4E-binding to the mRNA 5' cap in yeast involves a site partially shared by p20. EMBO J. 1998; 17(16):4798-808. PMC: 1170809. DOI: 10.1093/emboj/17.16.4798. View

5.
Saini A, Nanda J, Lorsch J, Hinnebusch A . Regulatory elements in eIF1A control the fidelity of start codon selection by modulating tRNA(i)(Met) binding to the ribosome. Genes Dev. 2010; 24(1):97-110. PMC: 2802195. DOI: 10.1101/gad.1871910. View