» Articles » PMID: 27172002

TP53INP2/DOR, a Mediator of Cell Autophagy, Promotes RDNA Transcription Via Facilitating the Assembly of the POLR1/RNA Polymerase I Preinitiation Complex at RDNA Promoters

Overview
Journal Autophagy
Specialty Cell Biology
Date 2016 May 13
PMID 27172002
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Cells control their metabolism through modulating the anabolic and catabolic pathways. TP53INP2/DOR (tumor protein p53 inducible nuclear protein 2), participates in cell catabolism by serving as a promoter of autophagy. Here we uncover a novel function of TP53INP2 in protein synthesis, a major biosynthetic and energy-consuming anabolic process. TP53INP2 localizes to the nucleolus through its nucleolar localization signal (NoLS) located at the C-terminal domain. Chromatin immunoprecipitation (ChIP) assays detected an association of TP53INP2 with the ribosomal DNA (rDNA), when exclusion of TP53INP2 from the nucleolus repressed rDNA promoter activity and the production of ribosomal RNA (rRNA) and proteins. The removal of TP53INP2 also impaired the association of the POLR1/RNA polymerase I preinitiation complex (PIC) with rDNA. Further, TP53INP2 interacts directly with POLR1 PIC, and is required for the assembly of the complex. These data indicate that TP53INP2 promotes ribosome biogenesis through facilitating rRNA synthesis at the nucleolus, suggesting a dual role of TP53INP2 in cell metabolism, assisting anabolism on the nucleolus, and stimulating catabolism off the nucleolus.

Citing Articles

Cytoplasmic TP53INP2 acts as an apoptosis partner in TRAIL treatment: the synergistic effect of TRAIL with venetoclax in TP53INP2-positive acute myeloid leukemia.

Ren J, Huang J, Yang Z, Sun M, Yang J, Lin C J Exp Clin Cancer Res. 2024; 43(1):176.

PMID: 38909249 PMC: 11193246. DOI: 10.1186/s13046-024-03100-0.


TP53INP2 knockdown inhibits inflammatory response and apoptosis after spinal cord injury.

Sun P, Chen J, Qin R Immun Inflamm Dis. 2024; 12(4):e1256.

PMID: 38652010 PMC: 11037250. DOI: 10.1002/iid3.1256.


Metabolic status differentiates Trp53inp2 function in pressure-overload induced heart failure.

Liu J, Liu T, Ren S, Zhu C, Bouso E, Mamlouk S Front Cardiovasc Med. 2024; 10:1226586.

PMID: 38188257 PMC: 10766701. DOI: 10.3389/fcvm.2023.1226586.


Deacetylation of ATG7 drives the induction of macroautophagy and LC3-associated microautophagy.

Xu Y, Qian C, Wang Q, Song L, He Z, Liu W Autophagy. 2023; 20(5):1134-1146.

PMID: 37999993 PMC: 11135844. DOI: 10.1080/15548627.2023.2287932.


Pan-cancer integrated bioinformatic analysis of RNA polymerase subunits reveal RNA Pol I member CD3EAP regulates cell growth by modulating autophagy.

Bhandari N, Acharya D, Chatterjee A, Mandve L, Kumar P, Pratap S Cell Cycle. 2023; 22(18):1986-2002.

PMID: 37795959 PMC: 10761113. DOI: 10.1080/15384101.2023.2265676.


References
1.
Bell S, Learned R, Jantzen H, Tjian R . Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis. Science. 1988; 241(4870):1192-7. DOI: 10.1126/science.3413483. View

2.
Thoreen C, Kang S, Chang J, Liu Q, Zhang J, Gao Y . An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 2009; 284(12):8023-32. PMC: 2658096. DOI: 10.1074/jbc.M900301200. View

3.
Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L . Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006; 20(9):1075-80. PMC: 1472467. DOI: 10.1101/gad.1399706. View

4.
PERRY R, Kelley D . Persistent synthesis of 5S RNA when production of 28S and 18S ribosomal RNA is inhibited by low doses of actinomycin D. J Cell Physiol. 1968; 72(3):235-46. DOI: 10.1002/jcp.1040720311. View

5.
Beckmann H, Chen J, OBrien T, Tjian R . Coactivator and promoter-selective properties of RNA polymerase I TAFs. Science. 1995; 270(5241):1506-9. DOI: 10.1126/science.270.5241.1506. View