» Articles » PMID: 27166859

Functions and Mechanisms of Microglia/macrophages in Neuroinflammation and Neurogenesis After Stroke

Overview
Journal Prog Neurobiol
Specialty Neurology
Date 2016 May 12
PMID 27166859
Citations 327
Authors
Affiliations
Soon will be listed here.
Abstract

Microglia/macrophages are the major immune cells involved in the defence against brain damage. Their morphology and functional changes are correlated with the release of danger signals induced by stroke. These cells are normally responsible for clearing away dead neural cells and restoring neuronal functions. However, when excessively activated by the damage-associated molecular patterns following stroke, they can produce a large number of proinflammatory cytokines that can disrupt neural cells and the blood-brain barrier and influence neurogenesis. These effects indicate the important roles of microglia/macrophages in the pathophysiological processes of stroke. However, the modifiable and adaptable nature of microglia/macrophages may also be beneficial for brain repair and not just result in damage. These distinct roles may be attributed to the different microglia/macrophage phenotypes because the M1 population is mainly destructive, while the M2 population is neuroprotective. Additionally, different gene expression signature changes in microglia/macrophages have been found in diverse inflammatory milieus. These biofunctional features enable dual roles for microglia/macrophages in brain damage and repair. Currently, it is thought that the proper inflammatory milieu may provide a suitable microenvironment for neurogenesis; however, detailed mechanisms underlying the inflammatory responses that initiate or inhibit neurogenesis remain unknown. This review summarizes recent progress concerning the mechanisms involved in brain damage, repair and regeneration related to microglia/macrophage activation and phenotype transition after stroke. We also argue that future translational studies should be targeting multiple key regulating molecules to improve brain repair, which should be accompanied by the concept of a "therapeutic time window" for sequential therapies.

Citing Articles

Exploring the Nexus: How Ferroptosis, Microglia, and Neuroinflammation Converge in Ischemic Stroke Pathogenesis.

Liu Z, Shen X, Li M, Liu P, Ge Z, Jin J Mol Neurobiol. 2025; .

PMID: 40063316 DOI: 10.1007/s12035-025-04815-7.


Esketamine attenuates traumatic brain injury by modulating STAT3-mediated Glycolysis and immune responses.

Liu Y, Gong Z, Zhang L, Yang X, Zhu J, Zhou X BMC Neurosci. 2025; 26(1):21.

PMID: 40055623 PMC: 11889827. DOI: 10.1186/s12868-025-00941-z.


Neurodegenerative diseases and neuroinflammation-induced apoptosis.

Huang S, Lu Y, Fang W, Huang Y, Li Q, Xu Z Open Life Sci. 2025; 20(1):20221051.

PMID: 40026360 PMC: 11868719. DOI: 10.1515/biol-2022-1051.


Electroacupuncture Improves Learning and Memory Impairment in Rats with Cerebral Ischemia/Reperfusion Injury by Promoting Microglia/Macrophage M2 Polarization Through Nrf2/HO-1 Pathway.

Xiao Y, Bai Y, Sun K, Wan J, Chen L, Chen S J Inflamm Res. 2025; 18:2925-2941.

PMID: 40026308 PMC: 11872104. DOI: 10.2147/JIR.S504670.


Glucose Metabolic Reprogramming in Microglia: Implications for Neurodegenerative Diseases and Targeted Therapy.

Fang M, Zhou Y, He K, Lu Y, Tao F, Huang H Mol Neurobiol. 2025; .

PMID: 39987285 DOI: 10.1007/s12035-025-04775-y.