» Articles » PMID: 27150276

Giant Photoluminescence Enhancement in Tungsten-diselenide-gold Plasmonic Hybrid Structures

Overview
Journal Nat Commun
Specialty Biology
Date 2016 May 7
PMID 27150276
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical for integrating these materials in optoelectronic and photonic devices. Typical photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption, emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide trenches in gold substrate, we report a giant photoluminescence enhancement of ∼20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic nanostructure. This work demonstrates the feasibility of giant photoluminescence enhancement in WSe2 with judiciously designed plasmonic nanostructures and paves a way towards the implementation of plasmon-enhanced transition metal dichalcogenide photodetectors, sensors and emitters.

Citing Articles

Empowering nanophotonic applications via artificial intelligence: pathways, progress, and prospects.

Chen W, Yang S, Yan Y, Gao Y, Zhu J, Dong Z Nanophotonics. 2025; 14(4):429-447.

PMID: 39975637 PMC: 11834058. DOI: 10.1515/nanoph-2024-0723.


Polarization-Dependent Plasmon-Induced Doping and Strain Effects in MoS Monolayers on Gold Nanostructures.

Lemes M, Pimenta A, Lozano Calderon G, Pereira-da-Silva M, Ames A, Teodoro M ACS Nano. 2025; 19(2):2518-2528.

PMID: 39789728 PMC: 11760179. DOI: 10.1021/acsnano.4c13867.


Active Surface-Enhanced Raman Scattering Platform Based on a 2D Material-Flexible Nanotip Array.

Kim Y, Behera S, Lee D, Namgung S, Park K, Kim D Biosensors (Basel). 2024; 14(12).

PMID: 39727884 PMC: 11674311. DOI: 10.3390/bios14120619.


Active and tunable nanophotonic metamaterials.

Fan K, Averitt R, Padilla W Nanophotonics. 2024; 11(17):3769-3803.

PMID: 39635159 PMC: 11501849. DOI: 10.1515/nanoph-2022-0188.


Prominently enhanced luminescence from a continuous monolayer of transition metal dichalcogenide on all-dielectric metasurfaces.

Iwanaga M, Yang X, Karanikolas V, Kuroda T, Sakuma Y Nanophotonics. 2024; 13(1):95-105.

PMID: 39633992 PMC: 11501220. DOI: 10.1515/nanoph-2023-0672.


References
1.
Najmaei S, Mlayah A, Arbouet A, Girard C, Leotin J, Lou J . Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures. ACS Nano. 2014; 8(12):12682-9. DOI: 10.1021/nn5056942. View

2.
Dong Z, Asbahi M, Lin J, Zhu D, Wang Y, Hippalgaonkar K . Second-Harmonic Generation from Sub-5 nm Gaps by Directed Self-Assembly of Nanoparticles onto Template-Stripped Gold Substrates. Nano Lett. 2015; 15(9):5976-81. DOI: 10.1021/acs.nanolett.5b02109. View

3.
Tan S, Wu L, Yang J, Bai P, Bosman M, Nijhuis C . Quantum plasmon resonances controlled by molecular tunnel junctions. Science. 2014; 343(6178):1496-9. DOI: 10.1126/science.1248797. View

4.
Desai S, Seol G, Kang J, Fang H, Battaglia C, Kapadia R . Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 2014; 14(8):4592-7. DOI: 10.1021/nl501638a. View

5.
Liu H, Wang B, Leong E, Yang P, Zong Y, Si G . Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer. ACS Nano. 2010; 4(6):3139-46. DOI: 10.1021/nn100466p. View