Purpose:
To evaluate the potential of intravoxel incoherent motion (IVIM) imaging to predict histological prognostic parameters by investigating whether IVIM parameters correlate with Gleason score.
Materials And Methods:
The institutional review board approved this retrospective study, and informed consent was waived. A total of 41 patients with histologically proven prostate cancer who underwent prostate MRI using a 3T MRI machine were included. For eight diffusion-weighted imaging b-values (0, 10, 20, 50, 100, 200, 500, and 800s/mm(2)), a spin-echo echo-planar imaging sequence was performed. D, f, D(⁎), and ADCfit values were compared among three groups of patients with prostate cancer: Gleason score 6 (n=9), 7 (n=16), or 8 or higher (n=16). Receiver operating characteristic (ROC) curves were generated for D, f, D(⁎), and ADCfit to assess the ability of each parameter to distinguish cancers with low Gleason scores from cancers with intermediate or high Gleason scores.
Results:
Pearson's coefficient analysis revealed significant negative correlations between Gleason score and ADCfit (r=-0.490, P=.001) and Gleason score and D values (r=-0.514, P=.001). Gleason score was poorly correlated with f (r=0.168, P=.292) and D(⁎) values (r=-0.108, P=.500). The ADCfit and D values of prostate cancers with Gleason scores 7 or ≥8 were significantly lower than values for prostate cancers with Gleason score 6 (P<.05). ROC curves were constructed to assess the ability of IVIM parameters to discriminate prostate cancers with Gleason score 6 from cancers with Gleason scores 7 or ≥8. Areas under the curve were 0.671 to 0.974. ADCfit and D yielded the highest Az value (0.960-0.956), whereas f yielded the lowest Az value (0.633).
Conclusions:
The pure molecular diffusion parameter, D, was the IVIM parameter that best discriminated prostate cancers with low Gleason scores from prostate cancers with intermediate or high Gleason scores.
Citing Articles
Quantitative magnetic resonance imaging in prostate cancer: A review of current technology.
Dhiman A, Kumar V, Das C
World J Radiol. 2024; 16(10):497-511.
PMID: 39494137
PMC: 11525833.
DOI: 10.4329/wjr.v16.i10.497.
Unveiling the diagnostic potential of diffusion kurtosis imaging and intravoxel incoherent motion for detecting and characterizing prostate cancer: a meta-analysis.
Rajabi P, Rezakhaniha B, Galougahi M, Mohammadimehr M, Sharifnia H, Pakzad R
Abdom Radiol (NY). 2024; 50(1):319-335.
PMID: 39083068
DOI: 10.1007/s00261-024-04454-x.
Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Parameters Could Predict International Society of Urological Pathology Risk Groups of Prostate Cancers on Radical Prostatectomy.
Chang C, Lin Y, Wong Y, Lin S, Lin C, Lin Y
Life (Basel). 2023; 13(9).
PMID: 37763347
PMC: 10532885.
DOI: 10.3390/life13091944.
Quantitative diffusion MRI in prostate cancer: Image quality, what we can measure and how it improves clinical assessment.
Fennessy F, Maier S
Eur J Radiol. 2023; 167:111066.
PMID: 37651828
PMC: 10623580.
DOI: 10.1016/j.ejrad.2023.111066.
Using IVIM Parameters to Differentiate Prostate Cancer and Contralateral Normal Tissue through Fusion of MRI Images with Whole-Mount Pathology Specimen Images by Control Point Registration Method.
Lee C, Chang K, Chiu F, Ou Y, Hwang J, Hsueh K
Diagnostics (Basel). 2021; 11(12).
PMID: 34943577
PMC: 8700385.
DOI: 10.3390/diagnostics11122340.
Diffusion and quantification of diffusion of prostate cancer.
Ueno Y, Tamada T, Sofue K, Murakami T
Br J Radiol. 2021; 95(1131):20210653.
PMID: 34538094
PMC: 8978232.
DOI: 10.1259/bjr.20210653.
Diffusion-weighted imaging in prostate cancer.
Tamada T, Ueda Y, Ueno Y, Kojima Y, Kido A, Yamamoto A
MAGMA. 2021; 35(4):533-547.
PMID: 34491467
DOI: 10.1007/s10334-021-00957-6.
IVIM Parameters on MRI Could Predict ISUP Risk Groups of Prostate Cancers on Radical Prostatectomy.
Chang C, Lin Y, Wong Y, Lin S, Lin C, Lin Y
Front Oncol. 2021; 11:659014.
PMID: 34277409
PMC: 8282053.
DOI: 10.3389/fonc.2021.659014.
Study on diagnostic value of quantitative parameters of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in prostate cancer.
Yao W, Liu J, Zheng J, Lu P, Zou S, Xu Y
Am J Transl Res. 2021; 13(4):3696-3702.
PMID: 34017553
PMC: 8129261.
Clinical application and progress of quantitative functional magnetic resonance imaging in prostate cancer.
Li M, Li W
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2021; 46(4):414-420.
PMID: 33967089
PMC: 10930317.
DOI: 10.11817/j.issn.1672-7347.2021.200316.
Comparative Study of Monoexponential, Intravoxel Incoherent Motion, Kurtosis, and IVIM-Kurtosis Models for the Diagnosis and Aggressiveness Assessment of Prostate Cancer.
Liu Y, Wang X, Cui Y, Jiang Y, Yu L, Liu M
Front Oncol. 2020; 10:1763.
PMID: 33042822
PMC: 7518290.
DOI: 10.3389/fonc.2020.01763.
Intravoxel Incoherent Motion Diffusion-Weighted Imaging Used to Detect Prostate Cancer and Stratify Tumor Grade: A Meta-Analysis.
He N, Li Z, Li X, Dai W, Peng C, Wu Y
Front Oncol. 2020; 10:1623.
PMID: 33042805
PMC: 7518084.
DOI: 10.3389/fonc.2020.01623.
Non-Gaussian models of diffusion weighted imaging for detection and characterization of prostate cancer: a systematic review and meta-analysis.
Brancato V, Cavaliere C, Salvatore M, Monti S
Sci Rep. 2019; 9(1):16837.
PMID: 31728007
PMC: 6856159.
DOI: 10.1038/s41598-019-53350-8.
Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging for predicting histological grade of hepatocellular carcinoma: Comparison with conventional diffusion-weighted imaging.
Zhu S, Liu Y, Wei Y, Li L, Dou S, Sun T
World J Gastroenterol. 2018; 24(8):929-940.
PMID: 29491686
PMC: 5829156.
DOI: 10.3748/wjg.v24.i8.929.
Differentiation of prostate cancer lesions in the Transition Zone by diffusion-weighted MRI.
Bao J, Wang X, Hu C, Hou J, Dong F, Guo L
Eur J Radiol Open. 2017; 4:123-128.
PMID: 29034282
PMC: 5633348.
DOI: 10.1016/j.ejro.2017.08.003.