» Articles » PMID: 27130610

Influence of a Polymerizable Eugenol Derivative on the Antibacterial Activity and Wettability of a Resin Composite for Intracanal Post Cementation and Core Build-up Restoration

Overview
Journal Dent Mater
Specialty Dentistry
Date 2016 May 1
PMID 27130610
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Objectives: Eugenol has been used in dentistry due to its ability to inhibit the growth of a range of microorganisms, including facultative anaerobes commonly isolated from infected root canals. The aim of this study was to evaluate the antibacterial activity of the experimental composites containing eugenyl methacrylate monomer (EgMA), a polymeric derivative of eugenol, against a range of oral bacteria, commonly associated with failure of coronal and endodontic restorations. In vitro composite behavior and wettability were also studied in conjunction with their antibacterial activity.

Methods: EgMA monomer (5 and 10% by weight) was added into BisGMA/TEGDMA resin based formulations with filler mixtures of hydroxyapatite (HA) and zirconium oxide ZrO2. The antibacterial activity of the experimental composites against Enterococcus faecalis, Streptococcus mutans and Propionibacterium acnes were evaluated by direct contact test and compared with composite formulation without inclusion of EgMA. To clarify the antibacterial mode of action, agar diffusion test (ADT) was also performed. Water sorption, solubility, diffusion coefficient, contact angle and surface free energy as complementary clinically relevant properties were determined.

Results: Water sorption and wettability studies showed reduction of water uptake and surface free energy values with increasing content of EgMA monomer, resulting in significant increase in the hydrophobicity of the composites. No inhibition zones were detected in any of the composites tested against the three bacteria employed as expected, due to the absence of any leachable antibacterial agent. The covalently anchored EgMA monomer with the composite surface exhibited an effective bacteriostatic activity by reducing the number of CFUs of the three species of bacteria tested with no significant dependence on the concentration of EgMA at 5 and 10% by weight. The surface antibacterial activity R of the experimental composites were different against the three tested species with values in the range 2.7-6.1 following the order E. faecalis<S. mutans<P. acnes.

Significance: The incorporation of EgMA monomer within polymerizable formulations provides a novel approach to yield intrinsically antibacterial resin composites for different dental applications.

Citing Articles

Antibacterial Effect of Two Novel Sealants: A Laboratory-Based Study.

Deshpande D, Maniar D, Bhargava A, Joshi P, Kadur Sundar Raj R, Dubey A J Pharm Bioallied Sci. 2024; 16(Suppl 1):S206-S208.

PMID: 38595342 PMC: 11001147. DOI: 10.4103/jpbs.jpbs_459_23.


Eugenol-Based Polymeric Materials-Antibacterial Activity and Applications.

Kowalewska A, Majewska-Smolarek K Antibiotics (Basel). 2023; 12(11).

PMID: 37998772 PMC: 10668689. DOI: 10.3390/antibiotics12111570.


Comparison of antibacterial activity and biocompatibility of non-leaching nitrofuran bone cement loaded with vancomycin, gentamicin, and tigecycline.

Gao Z, Xu Y, Kan Y, Li H, Guo R, Han L J Orthop Surg Res. 2023; 18(1):569.

PMID: 37542269 PMC: 10403827. DOI: 10.1186/s13018-023-04055-2.


Tailoring the monomers to overcome the shortcomings of current dental resin composites - review.

He J, Lassila L, Garoushi S, Vallittu P Biomater Investig Dent. 2023; 10(1):2191621.

PMID: 37090482 PMC: 10120559. DOI: 10.1080/26415275.2023.2191621.


Novel 1,2-Bismethacrylate-3-Eugenyl Propane for Resin Composites: Synthesis, Characterization, Rheological, and Degree of Conversion.

Al-Kahtani H, Al-Odayni A, Saeed W, Robaian A, Al-Kahtani A, Aouak T Polymers (Basel). 2023; 15(6).

PMID: 36987268 PMC: 10053438. DOI: 10.3390/polym15061481.