» Articles » PMID: 27092041

Control of Prosthetic Hands Via the Peripheral Nervous System

Abstract

This paper intends to provide a critical review of the literature on the technological issues on control and sensorization of hand prostheses interfacing with the Peripheral Nervous System (i.e., PNS), and their experimental validation on amputees. The study opens with an in-depth analysis of control solutions and sensorization features of research and commercially available prosthetic hands. Pros and cons of adopted technologies, signal processing techniques and motion control solutions are investigated. Special emphasis is then dedicated to the recent studies on the restoration of tactile perception in amputees through neural interfaces. The paper finally proposes a number of suggestions for designing the prosthetic system able to re-establish a bidirectional communication with the PNS and foster the prosthesis natural control.

Citing Articles

Regeneration, Regengrow and Tissue Repair in Animals: Evolution Indicates That No Regeneration Occurs in Terrestrial Environments but Only Recovery Healing.

Alibardi L J Dev Biol. 2025; 13(1.

PMID: 39846631 PMC: 11755470. DOI: 10.3390/jdb13010002.


A lightweight prosthetic hand with 19-DOF dexterity and human-level functions.

Yang H, Tao Z, Yang J, Ma W, Zhang H, Xu M Nat Commun. 2025; 16(1):955.

PMID: 39843457 PMC: 11754642. DOI: 10.1038/s41467-025-56352-5.


Next generation bioelectronic medicine: making the case for non-invasive closed-loop autonomic neuromodulation.

Lerman I, Bu Y, Singh R, Silverman H, Bhardwaj A, Mann A Bioelectron Med. 2025; 11(1):1.

PMID: 39833963 PMC: 11748337. DOI: 10.1186/s42234-024-00163-4.


The Latest Research Progress on Bionic Artificial Hands: A Systematic Review.

Guo K, Lu J, Wu Y, Hu X, Yang H Micromachines (Basel). 2024; 15(7).

PMID: 39064402 PMC: 11278702. DOI: 10.3390/mi15070891.


A Sensory Feedback Neural Stimulator Prototype for Both Implantable and Wearable Applications.

Mereu F, Cordella F, Paolini R, Scarpelli A, Demofonti A, Zollo L Micromachines (Basel). 2024; 15(4).

PMID: 38675291 PMC: 11051761. DOI: 10.3390/mi15040480.


References
1.
Jiang N, Rehbaum H, Vujaklija I, Graimann B, Farina D . Intuitive, online, simultaneous, and proportional myoelectric control over two degrees-of-freedom in upper limb amputees. IEEE Trans Neural Syst Rehabil Eng. 2013; 22(3):501-10. DOI: 10.1109/TNSRE.2013.2278411. View

2.
Pasquina P, Evangelista M, Carvalho A, Lockhart J, Griffin S, Nanos G . First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. J Neurosci Methods. 2014; 244:85-93. PMC: 4317373. DOI: 10.1016/j.jneumeth.2014.07.016. View

3.
Dhillon G, Lawrence S, Hutchinson D, Horch K . Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J Hand Surg Am. 2004; 29(4):605-15. DOI: 10.1016/j.jhsa.2004.02.006. View

4.
Scheme E, Englehart K . Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J Rehabil Res Dev. 2011; 48(6):643-59. DOI: 10.1682/jrrd.2010.09.0177. View

5.
Rossini P, Micera S, Benvenuto A, Carpaneto J, Cavallo G, Citi L . Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol. 2010; 121(5):777-83. DOI: 10.1016/j.clinph.2010.01.001. View