» Articles » PMID: 27086687

Quantifying the Effect of Vpu on the Promotion of HIV-1 Replication in the Humanized Mouse Model

Overview
Journal Retrovirology
Publisher Biomed Central
Specialty Microbiology
Date 2016 Apr 19
PMID 27086687
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Tetherin is an intrinsic anti-viral factor impairing the release of nascent HIV-1 particles from infected cells. Vpu, an HIV-1 accessory protein, antagonizes the anti-viral action of tetherin. Although previous studies using in vitro cell culture systems have revealed the molecular mechanisms of the anti-viral action of tetherin and the antagonizing action of Vpu against tetherin, it still remains unclear how Vpu affects the kinetics of HIV-1 replication in vivo.

Results: To quantitatively assess the role of Vpu in viral replication in vivo, we analyzed time courses of experimental data with viral load and target cell levels in the peripheral blood of humanized mice infected with wild-type and vpu-deficient HIV-1. Our recently developed mathematical model describes the acute phase of this infection reasonably, and allowed us to estimate several parameters characterizing HIV-1 infection in mice. Using a technique of Bayesian parameter estimation, we estimate distributions of the basic reproduction number of wild-type and vpu-deficient HIV-1. This reveals that Vpu markedly increases the rate of viral replication in vivo.

Conclusions: Combining experiments with mathematical modeling, we provide an estimate for the contribution of Vpu to viral replication in humanized mice.

Citing Articles

Estimation of timing of infection from longitudinal SARS-CoV-2 viral load data: mathematical modelling study.

Ejima K, Kim K, Bento A, Iwanami S, Fujita Y, Aihara K BMC Infect Dis. 2022; 22(1):656.

PMID: 35902832 PMC: 9331019. DOI: 10.1186/s12879-022-07646-2.


Incomplete antiviral treatment may induce longer durations of viral shedding during SARS-CoV-2 infection.

Kim K, Iwanami S, Oda T, Fujita Y, Kuba K, Miyazaki T Life Sci Alliance. 2021; 4(10).

PMID: 34344719 PMC: 8340032. DOI: 10.26508/lsa.202101049.


Revisiting the guidelines for ending isolation for COVID-19 patients.

Jeong Y, Ejima K, Kim K, Iwanami S, Bento A, Fujita Y Elife. 2021; 10.

PMID: 34311842 PMC: 8315804. DOI: 10.7554/eLife.69340.


Detection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling study.

Iwanami S, Ejima K, Kim K, Noshita K, Fujita Y, Miyazaki T PLoS Med. 2021; 18(7):e1003660.

PMID: 34228712 PMC: 8259968. DOI: 10.1371/journal.pmed.1003660.


Dynamical characterization of antiviral effects in COVID-19.

Abuin P, Anderson A, Ferramosca A, Hernandez-Vargas E, Gonzalez A Annu Rev Control. 2021; 52:587-601.

PMID: 34093069 PMC: 8162791. DOI: 10.1016/j.arcontrol.2021.05.001.


References
1.
Stafford M, Corey L, Cao Y, Daar E, Ho D, Perelson A . Modeling plasma virus concentration during primary HIV infection. J Theor Biol. 2000; 203(3):285-301. DOI: 10.1006/jtbi.2000.1076. View

2.
Kirchhoff F . Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe. 2010; 8(1):55-67. DOI: 10.1016/j.chom.2010.06.004. View

3.
Perelson A . Modelling viral and immune system dynamics. Nat Rev Immunol. 2002; 2(1):28-36. DOI: 10.1038/nri700. View

4.
Schubert U, Clouse K, Strebel K . Augmentation of virus secretion by the human immunodeficiency virus type 1 Vpu protein is cell type independent and occurs in cultured human primary macrophages and lymphocytes. J Virol. 1995; 69(12):7699-711. PMC: 189711. DOI: 10.1128/JVI.69.12.7699-7711.1995. View

5.
Sauter D, Schindler M, Specht A, Landford W, Munch J, Kim K . Tetherin-driven adaptation of Vpu and Nef function and the evolution of pandemic and nonpandemic HIV-1 strains. Cell Host Microbe. 2009; 6(5):409-21. PMC: 2779047. DOI: 10.1016/j.chom.2009.10.004. View