Lower Bounds on Paraclique Density
Overview
Authors
Affiliations
The scientific literature teems with clique-centric clustering strategies. In this paper we analyze one such method, the paraclique algorithm. Paraclique has found practical utility in a variety of application domains, and has been successfully employed to reduce the effects of noise. Nevertheless, its formal analysis and worst-case guarantees have remained elusive. We address this issue by deriving a series of lower bounds on paraclique densities.
A Comparative Study of Gene Co-Expression Thresholding Algorithms.
Bleker C, Grady S, Langston M J Comput Biol. 2024; 31(6):539-548.
PMID: 38781420 PMC: 11698664. DOI: 10.1089/cmb.2024.0509.
Seminar: Scalable Preprocessing Tools for Exposomic Data Analysis.
Grady S, Dojcsak L, Harville E, Wallace M, Vilda D, Donneyong M Environ Health Perspect. 2023; 131(12):124201.
PMID: 38109119 PMC: 10727037. DOI: 10.1289/EHP12901.
Harville E, Grady S, Langston M, Juarez P, Vilda D, Wallace M BMC Public Health. 2022; 22(1):2097.
PMID: 36384521 PMC: 9670647. DOI: 10.1186/s12889-022-14397-x.
Molecular Subtyping and Outlier Detection in Human Disease Using the Paraclique Algorithm.
Hagan R, Langston M Algorithms. 2022; 14(2).
PMID: 36092474 PMC: 9455766. DOI: 10.3390/a14020063.
Unsupervised dimensionality reduction for exposome research.
Kalia V, Walker D, Krasnodemski K, Jones D, Miller G, Kioumourtzoglou M Curr Opin Environ Sci Health. 2020; 15:32-38.
PMID: 32905218 PMC: 7467332. DOI: 10.1016/j.coesh.2020.05.001.