» Articles » PMID: 27035977

Engineering Titania Nanostructure to Tune and Improve Its Photocatalytic Activity

Abstract

Photocatalytic pathways could prove crucial to the sustainable production of fuels and chemicals required for a carbon-neutral society. Electron-hole recombination is a critical problem that has, so far, limited the efficiency of the most promising photocatalytic materials. Here, we show the efficacy of anisotropy in improving charge separation and thereby boosting the activity of a titania (TiO2) photocatalytic system. Specifically, we show that H2 production in uniform, one-dimensional brookite titania nanorods is highly enhanced by engineering their length. By using complimentary characterization techniques to separately probe excited electrons and holes, we link the high observed reaction rates to the anisotropic structure, which favors efficient carrier utilization. Quantum yield values for hydrogen production from ethanol, glycerol, and glucose as high as 65%, 35%, and 6%, respectively, demonstrate the promise and generality of this approach for improving the photoactivity of semiconducting nanostructures for a wide range of reacting systems.

Citing Articles

Photochemical tuning of dynamic defects for high-performance atomically dispersed catalysts.

Lee C, Lee B, Park S, Jung Y, Han J, Heo J Nat Mater. 2024; 23(4):552-559.

PMID: 38316979 DOI: 10.1038/s41563-024-01799-y.


Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding.

Yang Z, Wei Y, Wei J, Yang Z Nat Commun. 2022; 13(1):5844.

PMID: 36195762 PMC: 9532428. DOI: 10.1038/s41467-022-33638-6.


Insights into a rutile/brookite homojunction of titanium dioxide: separated reactive sites and boosted photocatalytic activity.

Chen J, Guan M, Zhang X, Gong X RSC Adv. 2022; 9(63):36615-36620.

PMID: 35539077 PMC: 9075333. DOI: 10.1039/c9ra07483j.


Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation.

Khan K, Tareen A, Aslam M, Rehman Sagar R, Zhang B, Huang W Nanomicro Lett. 2021; 12(1):167.

PMID: 34138161 PMC: 7770787. DOI: 10.1007/s40820-020-00504-3.


Nanostructured Gels for Energy and Environmental Applications.

Cringoli M, Marchesan S, Melchionna M, Fornasiero P Molecules. 2020; 25(23).

PMID: 33260409 PMC: 7730639. DOI: 10.3390/molecules25235620.


References
1.
Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund M, Liden G, Zacchi G . Bio-ethanol--the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006; 24(12):549-56. DOI: 10.1016/j.tibtech.2006.10.004. View

2.
Linic S, Christopher P, Ingram D . Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater. 2011; 10(12):911-21. DOI: 10.1038/nmat3151. View

3.
Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M . Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev. 2014; 114(19):9919-86. DOI: 10.1021/cr5001892. View

4.
Buonsanti R, Grillo V, Carlino E, Giannini C, Kipp T, Cingolani R . Nonhydrolytic synthesis of high-quality anisotropically shaped brookite TiO2 nanocrystals. J Am Chem Soc. 2008; 130(33):11223-33. DOI: 10.1021/ja803559b. View

5.
Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M . Direct observation of reactive trapped holes in TiO2 undergoing photocatalytic oxidation of adsorbed alcohols: evaluation of the reaction rates and yields. J Am Chem Soc. 2006; 128(2):416-7. DOI: 10.1021/ja055866p. View