» Articles » PMID: 27016205

Structural Dynamics and Mechanochemical Coupling in DNA Gyrase

Overview
Journal J Mol Biol
Publisher Elsevier
Date 2016 Mar 27
PMID 27016205
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Gyrase is a molecular motor that harnesses the free energy of ATP hydrolysis to perform mechanical work on DNA. The enzyme specifically introduces negative supercoiling in a process that must coordinate fuel consumption with DNA cleavage and religation and with numerous conformational changes in both the protein and DNA components of a large nucleoprotein complex. Here we present a current understanding of mechanochemical coupling in this essential molecular machine, with a focus on recent diverse biophysical approaches that have revealed details of molecular architectures, new conformational intermediates, structural transitions modulated by ATP binding, and the influence of mechanics on motor function. Recent single-molecule assays have also illuminated the reciprocal relationships between supercoiling and transcription, an illustration of mechanical interactions between gyrase and other molecular machines at the heart of chromosomal biology.

Citing Articles

Structures of African swine fever virus topoisomerase complex and their implications.

Yang J, Shao Z, Zhao X, Zhang W, Zhang Y, Li L Nat Commun. 2024; 15(1):6484.

PMID: 39090127 PMC: 11294524. DOI: 10.1038/s41467-024-50981-y.


Spatio-temporal organization of the chromosome from base to cellular length scales.

Royzenblat S, Freddolino L EcoSal Plus. 2024; 12(1):eesp00012022.

PMID: 38864557 PMC: 11636183. DOI: 10.1128/ecosalplus.esp-0001-2022.


Friend or Foe: Protein Inhibitors of DNA Gyrase.

Ruan S, Tu C, Bourne C Biology (Basel). 2024; 13(2).

PMID: 38392303 PMC: 10886550. DOI: 10.3390/biology13020084.


Diversity and Functions of Type II Topoisomerases.

Sutormin D, Galivondzhyan A, Polkhovskiy A, Kamalyan S, Severinov K, Dubiley S Acta Naturae. 2021; 13(1):59-75.

PMID: 33959387 PMC: 8084294. DOI: 10.32607/actanaturae.11058.


DNA supercoiling differences in bacteria result from disparate DNA gyrase activation by polyamines.

Duprey A, Groisman E PLoS Genet. 2020; 16(10):e1009085.

PMID: 33125364 PMC: 7598504. DOI: 10.1371/journal.pgen.1009085.


References
1.
Costenaro L, Grossmann J, Ebel C, Maxwell A . Small-angle X-ray scattering reveals the solution structure of the full-length DNA gyrase a subunit. Structure. 2005; 13(2):287-96. DOI: 10.1016/j.str.2004.12.011. View

2.
Chong S, Chen C, Ge H, Xie X . Mechanism of transcriptional bursting in bacteria. Cell. 2014; 158(2):314-326. PMC: 4105854. DOI: 10.1016/j.cell.2014.05.038. View

3.
Nollmann M, Stone M, Bryant Z, Gore J, Crisona N, Hong S . Multiple modes of Escherichia coli DNA gyrase activity revealed by force and torque. Nat Struct Mol Biol. 2007; 14(4):264-71. DOI: 10.1038/nsmb1213. View

4.
Gubaev A, Hilbert M, Klostermeier D . The DNA-gate of Bacillus subtilis gyrase is predominantly in the closed conformation during the DNA supercoiling reaction. Proc Natl Acad Sci U S A. 2009; 106(32):13278-83. PMC: 2726392. DOI: 10.1073/pnas.0902493106. View

5.
van Workum M, van Dooren S, Oldenburg N, Molenaar D, Jensen P, Snoep J . DNA supercoiling depends on the phosphorylation potential in Escherichia coli. Mol Microbiol. 1996; 20(2):351-60. DOI: 10.1111/j.1365-2958.1996.tb02622.x. View