Nanoantenna for Electrical Generation of Surface Plasmon Polaritons
Overview
Authors
Affiliations
Light emission by inelastic tunneling has been known for many years. Recently, this technique has been used to generate surface plasmons using a scanning tunneling microscope tip. The emission process suffers from a very low efficiency lower than a photon in 10^{4} electrons. We introduce a resonant plasmonic nanoantenna that allows both enhancing the power conversion to surface plasmon polaritons by more than 2 orders of magnitude and narrowing the emission spectrum. The physics of the emission process is analyzed in terms of local density of states and the efficiency of the nanoantenna to radiate surface plasmon polaritons.
Design principles for electrically driven Luttinger liquid-fed plasmonic nanoantennas.
Jeon E, Ko Y, Yoo S Nanophotonics. 2024; 12(13):2507-2516.
PMID: 39633741 PMC: 11501488. DOI: 10.1515/nanoph-2022-0782.
In-Plane Radiation of Surface Plasmon Polaritons Excited by Free Electrons.
Zhang P, Dong Y, Li X, Cao X, Yang Y, Yu G Micromachines (Basel). 2024; 15(6).
PMID: 38930693 PMC: 11205498. DOI: 10.3390/mi15060723.
Waveguide-Integrated Light-Emitting Metal-Insulator-Graphene Tunnel Junctions.
Liu L, Krasavin A, Li J, Li L, Yang L, Guo X Nano Lett. 2023; 23(9):3731-3738.
PMID: 37097286 PMC: 10176563. DOI: 10.1021/acs.nanolett.2c04975.
The Luminescence Hypothesis of Olfaction.
Willeford K Sensors (Basel). 2023; 23(3).
PMID: 36772376 PMC: 9919928. DOI: 10.3390/s23031333.
Dyshlyuk A, Proskurin A, Bogdanov A, Vitrik O Nanomaterials (Basel). 2021; 11(11).
PMID: 34835701 PMC: 8625512. DOI: 10.3390/nano11112937.