» Articles » PMID: 27010605

Identification of Circadian-related Gene Expression Profiles in Entrained Breast Cancer Cell Lines

Overview
Journal Chronobiol Int
Publisher Informa Healthcare
Date 2016 Mar 25
PMID 27010605
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Cancer cells have broken circadian clocks when compared to their normal tissue counterparts. Moreover, it has been shown in breast cancer that disruption of common circadian oscillations is associated with a more negative prognosis. Numerous studies, focused on canonical circadian genes in breast cancer cell lines, have suggested that there are no mRNA circadian-like oscillations. Nevertheless, cancer cell lines have not been extensively characterized and it is unknown to what extent the circadian oscillations are disrupted. We have chosen representative non-cancerous and cancerous breast cell lines (MCF-10A, MCF-7, ZR-75-30, MDA-MB-231 and HCC-1954) in order to determine the degree to which the circadian clock is damaged. We used serum shock to synchronize the circadian clocks in culture. Our aim was to initially observe the time course of gene expression using cDNA microarrays in the non-cancerous MCF-10A and the cancerous MCF-7 cells for screening and then to characterize specific genes in other cell lines. We used a cosine function to select highly correlated profiles. Some of the identified genes were validated by quantitative polymerase chain reaction (qPCR) and further evaluated in the other breast cancer cell lines. Interestingly, we observed that breast cancer and non-cancerous cultured cells are able to generate specific circadian expression profiles in response to the serum shock. The rhythmic genes, suggested via microarray and measured in each particular subtype, suggest that each breast cancer cell type responds differently to the circadian synchronization. Future results could identify circadian-like genes that are altered in breast cancer and non-cancerous cells, which can be used to propose novel treatments. Breast cell lines are potential models for in vitro studies of circadian clocks and clock-controlled pathways.

Citing Articles

Circadian rhythms and breast cancer: unraveling the biological clock's role in tumor microenvironment and ageing.

Yan Y, Su L, Huang S, He Q, Lu J, Luo H Front Immunol. 2024; 15:1444426.

PMID: 39139571 PMC: 11319165. DOI: 10.3389/fimmu.2024.1444426.


The Relationship between Circadian Rhythm and Cancer Disease.

Munteanu C, Turti S, Achim L, Muresan R, Souca M, Prifti E Int J Mol Sci. 2024; 25(11).

PMID: 38892035 PMC: 11172077. DOI: 10.3390/ijms25115846.


Krüppel-like factor 9 (KLF9) links hormone dysregulation and circadian disruption to breast cancer pathogenesis.

Ybanez W, Bagamasbad P Cancer Cell Int. 2023; 23(1):33.

PMID: 36823570 PMC: 9948451. DOI: 10.1186/s12935-023-02874-1.


Melatonin Regulates the Daily Levels of Plasma Amino Acids, Acylcarnitines, Biogenic Amines, Sphingomyelins, and Hexoses in a Xenograft Model of Triple Negative Breast Cancer.

Junior R, de Almeida Chuffa L, Simao V, Sonehara N, Chammas R, Reiter R Int J Mol Sci. 2022; 23(16).

PMID: 36012374 PMC: 9408859. DOI: 10.3390/ijms23169105.


ROR activation by Nobiletin enhances antitumor efficacy via suppression of IκB/NF-κB signaling in triple-negative breast cancer.

Kim E, Kim Y, Ji Z, Kang J, Wirianto M, Paudel K Cell Death Dis. 2022; 13(4):374.

PMID: 35440077 PMC: 9018867. DOI: 10.1038/s41419-022-04826-5.