» Articles » PMID: 26996292

Four-dimensional Live Imaging of Hemodynamics in Mammalian Embryonic Heart with Doppler Optical Coherence Tomography

Overview
Journal J Biophotonics
Date 2016 Mar 22
PMID 26996292
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Hemodynamic analysis of the mouse embryonic heart is essential for understanding the functional aspects of early cardiogenesis and advancing the research in congenital heart defects. However, high-resolution imaging of cardiac hemodynamics in mammalian models remains challenging, primarily due to the dynamic nature and deep location of the embryonic heart. Here we report four-dimensional micro-scale imaging of blood flow in the early mouse embryonic heart, enabling time-resolved measurement and analysis of flow velocity throughout the heart tube. Our method uses Doppler optical coherence tomography in live mouse embryo culture, and employs a post-processing synchronization approach to reconstruct three-dimensional data over time at a 100 Hz volume rate. Experiments were performed on live mouse embryos at embryonic day 9.0. Our results show blood flow dynamics inside the beating heart, with the capability for quantitative flow velocity assessment in the primitive atrium, atrioventricular and bulboventricular regions, and bulbus cordis. Combined cardiodynamic and hemodynamic analysis indicates this functional imaging method can be utilized to further investigate the mechanical relationship between blood flow dynamics and cardiac wall movement, bringing new possibilities to study biomechanics in early mammalian cardiogenesis. Four-dimensional live hemodynamic imaging of the mouse embryonic heart at embryonic day 9.0 using Doppler optical coherence tomography, showing directional blood flows in the sinus venosus, primitive atrium, atrioventricular region and vitelline vein.

Citing Articles

Clipping spline: interactive, dynamic 4D volume clipping and analysis based on thin plate spline.

Faubert A, Wang S Biomed Opt Express. 2025; 16(2):499-519.

PMID: 39958850 PMC: 11828437. DOI: 10.1364/BOE.544231.


Hemodynamics During Development and Postnatal Life.

Gregorovicova M, Lashkarinia S, Yap C, Tomek V, Sedmera D Adv Exp Med Biol. 2024; 1441:201-226.

PMID: 38884713 DOI: 10.1007/978-3-031-44087-8_11.


Imaging Approaches and the Quantitative Analysis of Heart Development.

Raiola M, Sendra M, Torres M J Cardiovasc Dev Dis. 2023; 10(4).

PMID: 37103024 PMC: 10144158. DOI: 10.3390/jcdd10040145.


Open-source, highly efficient, post-acquisition synchronization for 4D dual-contrast imaging of the mouse embryonic heart over development with optical coherence tomography.

Faubert A, Larina I, Wang S Biomed Opt Express. 2023; 14(1):163-181.

PMID: 36698661 PMC: 9842004. DOI: 10.1364/BOE.475027.


Mouse embryo phenotyping with optical coherence tomography.

Scully D, Larina I Front Cell Dev Biol. 2022; 10:1000237.

PMID: 36158219 PMC: 9500480. DOI: 10.3389/fcell.2022.1000237.


References
1.
Stypmann J . Doppler ultrasound in mice. Echocardiography. 2007; 24(1):97-112. DOI: 10.1111/j.1540-8175.2006.00358.x. View

2.
Jenkins M, ROTHENBERG F, Roy D, Nikolski V, Hu Z, Watanabe M . 4D embryonic cardiography using gated optical coherence tomography. Opt Express. 2009; 14(2):736-48. DOI: 10.1364/opex.14.000736. View

3.
Yutzey K, Robbins J . Principles of genetic murine models for cardiac disease. Circulation. 2007; 115(6):792-9. DOI: 10.1161/CIRCULATIONAHA.106.682534. View

4.
Zhao Y, Chen Z, Saxer C, Xiang S, de Boer J, Nelson J . Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt Lett. 2007; 25(2):114-6. DOI: 10.1364/ol.25.000114. View

5.
Garcia M, Udan R, Hadjantonakis A, Dickinson M . Preparation of postimplantation mouse embryos for imaging. Cold Spring Harb Protoc. 2011; 2011(4):pdb.prot5594. PMC: 6830062. DOI: 10.1101/pdb.prot5594. View