» Articles » PMID: 26986934

Genetic Biomarkers of Drug Response for Small-molecule Therapeutics Targeting the RTK/Ras/PI3K, P53 or Rb Pathway in Glioblastoma

Overview
Journal CNS Oncol
Specialty Oncology
Date 2016 Mar 18
PMID 26986934
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Glioblastoma is the most deadly and frequently occurring primary malignant tumor of the central nervous system. Genomic studies have shown that mutated oncogenes and tumor suppressor genes in glioblastoma mainly occur in three pathways: the RTK/Ras/PI3K signaling, the p53 and the Rb pathways. In this review, we summarize the modulatory effects of genetic aberrations in these three pathways to drugs targeting these specific pathways. We also provide an overview of the preclinical efforts made to identify genetic biomarkers of response and resistance. Knowledge of biomarkers will finally promote patient stratification in clinical trials, a prerequisite for trial design in the era of precision medicine.

Citing Articles

Radiogenomics and machine learning predict oncogenic signaling pathways in glioblastoma.

Ahanger A, Aalam S, Masoodi T, Shah A, Khan M, Bhat A J Transl Med. 2025; 23(1):121.

PMID: 39871351 PMC: 11773707. DOI: 10.1186/s12967-025-06101-5.


Advances in Therapy for Urothelial and Non-Urothelial Subtype Histologies of Advanced Bladder Cancer: From Etiology to Current Development.

Kwon W, Seo H, Song G, Lee M, Park W Biomedicines. 2025; 13(1).

PMID: 39857670 PMC: 11761267. DOI: 10.3390/biomedicines13010086.


Use of microRNAs as Diagnostic, Prognostic, and Therapeutic Tools for Glioblastoma.

Valle-Garcia D, la Cruz V, Flores I, Salazar A, Pineda B, Meza-Sosa K Int J Mol Sci. 2024; 25(5).

PMID: 38473710 PMC: 10931459. DOI: 10.3390/ijms25052464.


Systems Medicine for Precise Targeting of Glioblastoma.

Zeng J, Zeng X Mol Biotechnol. 2023; 65(10):1565-1584.

PMID: 36859639 PMC: 9977103. DOI: 10.1007/s12033-023-00699-x.


A review for the pharmacological effects of paeoniflorin in the nervous system.

Hong H, Lu X, Wu C, Chen J, Chen C, Zhang J Front Pharmacol. 2022; 13:898955.

PMID: 36046834 PMC: 9420976. DOI: 10.3389/fphar.2022.898955.


References
1.
Charest A, Wilker E, McLaughlin M, Lane K, Gowda R, Coven S . ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Res. 2006; 66(15):7473-81. DOI: 10.1158/0008-5472.CAN-06-1193. View

2.
Pandita A, Aldape K, Zadeh G, Guha A, James C . Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes Chromosomes Cancer. 2003; 39(1):29-36. DOI: 10.1002/gcc.10300. View

3.
Francis J, Zhang C, Maire C, Jung J, Manzo V, Adalsteinsson V . EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing. Cancer Discov. 2014; 4(8):956-71. PMC: 4125473. DOI: 10.1158/2159-8290.CD-13-0879. View

4.
Akhavan D, Pourzia A, Nourian A, Williams K, Nathanson D, Babic I . De-repression of PDGFRβ transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients. Cancer Discov. 2013; 3(5):534-47. PMC: 3651754. DOI: 10.1158/2159-8290.CD-12-0502. View

5.
Lee M, Ye A, Gardino A, Heijink A, Sorger P, MacBeath G . Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell. 2012; 149(4):780-94. PMC: 3501264. DOI: 10.1016/j.cell.2012.03.031. View