» Articles » PMID: 26985663

Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites

Overview
Journal PLoS One
Date 2016 Mar 18
PMID 26985663
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival.

Citing Articles

Heterologous expressing melittin in a probiotic yeast to evaluate its function for promoting NSC-34 regeneration.

Huang H, Hsu H, Kuo C, Wu M, Lai C, Chang G Appl Microbiol Biotechnol. 2024; 108(1):496.

PMID: 39466458 PMC: 11519230. DOI: 10.1007/s00253-024-13336-7.


Neochloris oleoabundans cell wall rupture through melittin peptide: a new approach to increase lipid recovery.

Vargas-Perez M, Gonzalez-Horta A, Mendoza-Hernandez H, Elias-Santos M, Acuna-Askar K, Galan-Wong L Biotechnol Lett. 2023; 46(1):97-106.

PMID: 38109017 DOI: 10.1007/s10529-023-03451-2.


Applications and evolution of melittin, the quintessential membrane active peptide.

Guha S, Ferrie R, Ghimire J, Ventura C, Wu E, Sun L Biochem Pharmacol. 2021; 193:114769.

PMID: 34543656 PMC: 9235364. DOI: 10.1016/j.bcp.2021.114769.


Synthetic Biology and Computer-Based Frameworks for Antimicrobial Peptide Discovery.

Torres M, Cao J, Franco O, Lu T, de la Fuente-Nunez C ACS Nano. 2021; 15(2):2143-2164.

PMID: 33538585 PMC: 8734659. DOI: 10.1021/acsnano.0c09509.

References
1.
Valderrama M, de Siloniz M, Gonzalo P, Peinado J . A differential medium for the isolation of Kluyveromyces marxianus and Kluyveromyces lactis from dairy products. J Food Prot. 1999; 62(2):189-93. DOI: 10.4315/0362-028x-62.2.189. View

2.
Husseneder C, Kenneth Grace J . Genetically engineered termite gut bacteria (Enterobacter cloacae) deliver and spread foreign genes in termite colonies. Appl Microbiol Biotechnol. 2005; 68(3):360-7. DOI: 10.1007/s00253-005-1914-5. View

3.
Mutwiri G, Henk W, Enright F, Corbeil L . Effect of the antimicrobial peptide, D-hecate, on trichomonads. J Parasitol. 2001; 86(6):1355-9. DOI: 10.1645/0022-3395(2000)086[1355:EOTAPD]2.0.CO;2. View

4.
Culliney T, Grace J . Prospects for the biological control of subterranean termites (Isoptera: rhinotermitidae), with special reference to Coptotermes formosanus. Bull Entomol Res. 2000; 90(1):9-21. View

5.
Bechinger B . Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J Membr Biol. 1997; 156(3):197-211. DOI: 10.1007/s002329900201. View