» Articles » PMID: 26984908

A Markov Chain Representation of the Multiple Testing Problem

Overview
Publisher Sage Publications
Specialties Public Health
Science
Date 2016 Mar 18
PMID 26984908
Citations 1
Authors
Affiliations
Soon will be listed here.
Abstract

The problem of multiple hypothesis testing can be represented as a Markov process where a new alternative hypothesis is accepted in accordance with its relative evidence to the currently accepted one. This virtual and not formally observed process provides the most probable set of non null hypotheses given the data; it plays the same role as Markov Chain Monte Carlo in approximating a posterior distribution. To apply this representation and obtain the posterior probabilities over all alternative hypotheses, it is enough to have, for each test, barely defined Bayes Factors, e.g. Bayes Factors obtained up to an unknown constant. Such Bayes Factors may either arise from using default and improper priors or from calibrating p-values with respect to their corresponding Bayes Factor lower bound. Both sources of evidence are used to form a Markov transition kernel on the space of hypotheses. The approach leads to easy interpretable results and involves very simple formulas suitable to analyze large datasets as those arising from gene expression data (microarray or RNA-seq experiments).

Citing Articles

Transfer Learning in Multiple Hypothesis Testing.

Cabras S, Castellanos Nueda M Entropy (Basel). 2024; 26(1).

PMID: 38248175 PMC: 11154554. DOI: 10.3390/e26010049.

References
1.
Robinson M, Smyth G . Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics. 2007; 9(2):321-32. DOI: 10.1093/biostatistics/kxm030. View

2.
Irizarry R, Bolstad B, Collin F, Cope L, Hobbs B, Speed T . Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003; 31(4):e15. PMC: 150247. DOI: 10.1093/nar/gng015. View

3.
Nalpas N, Park S, Magee D, Taraktsoglou M, Browne J, Conlon K . Whole-transcriptome, high-throughput RNA sequence analysis of the bovine macrophage response to Mycobacterium bovis infection in vitro. BMC Genomics. 2013; 14:230. PMC: 3640917. DOI: 10.1186/1471-2164-14-230. View

4.
Robinson M, Smyth G . Moderated statistical tests for assessing differences in tag abundance. Bioinformatics. 2007; 23(21):2881-7. DOI: 10.1093/bioinformatics/btm453. View

5.
Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P . Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol. 2013; 14(9):R95. PMC: 4054597. DOI: 10.1186/gb-2013-14-9-r95. View