» Articles » PMID: 26984102

Design and Synthesis of the Superionic Conductor Na10SnP2S12

Overview
Journal Nat Commun
Specialty Biology
Date 2016 Mar 18
PMID 26984102
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm(-1) rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.

Citing Articles

Overview of Inorganic Electrolytes for All-Solid-State Sodium Batteries.

Radjendirane A, Maurya D, Ren J, Hou H, Algadi H, Xu B Langmuir. 2024; 40(32):16690-16712.

PMID: 39078042 PMC: 11325648. DOI: 10.1021/acs.langmuir.4c01845.


LaCl-based sodium halide solid electrolytes with high ionic conductivity for all-solid-state batteries.

Fu C, Li Y, Xu W, Feng X, Gu W, Liu J Nat Commun. 2024; 15(1):4315.

PMID: 38773104 PMC: 11109254. DOI: 10.1038/s41467-024-48712-4.


Chlorine-Rich NaPSCl: A Promising Sodium Solid Electrolyte for All-Solid-State Sodium Batteries.

Zhang Y, Zheng H, You J, Zhao H, Khan A, Gao L Materials (Basel). 2024; 17(9).

PMID: 38730786 PMC: 11084612. DOI: 10.3390/ma17091980.


Design principles for sodium superionic conductors.

Wang S, Fu J, Liu Y, Saravanan R, Luo J, Deng S Nat Commun. 2023; 14(1):7615.

PMID: 37993459 PMC: 10665354. DOI: 10.1038/s41467-023-43436-3.


Colloidal superionic conductors.

Lin Y, Olvera de la Cruz M Proc Natl Acad Sci U S A. 2023; 120(15):e2300257120.

PMID: 37018200 PMC: 10104562. DOI: 10.1073/pnas.2300257120.


References
1.
Blochl . Projector augmented-wave method. Phys Rev B Condens Matter. 1994; 50(24):17953-17979. DOI: 10.1103/physrevb.50.17953. View

2.
Perdew , Burke , Ernzerhof . Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996; 77(18):3865-3868. DOI: 10.1103/PhysRevLett.77.3865. View

3.
Hayashi A, Noi K, Sakuda A, Tatsumisago M . Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat Commun. 2012; 3:856. DOI: 10.1038/ncomms1843. View

4.
Belsky A, Hellenbrandt M, Karen V, Luksch P . New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr B. 2002; 58(Pt 3 Pt 1):364-9. DOI: 10.1107/s0108768102006948. View

5.
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M . A lithium superionic conductor. Nat Mater. 2011; 10(9):682-6. DOI: 10.1038/nmat3066. View