» Articles » PMID: 26982719

PGC1α Drives NAD Biosynthesis Linking Oxidative Metabolism to Renal Protection

Overview
Journal Nature
Specialty Science
Date 2016 Mar 17
PMID 26982719
Citations 280
Authors
Affiliations
Soon will be listed here.
Abstract

The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischaemia. Acute kidney injury (AKI) affects 3% of all hospitalized patients. Here we show that the mitochondrial biogenesis regulator, PGC1α, is a pivotal determinant of renal recovery from injury by regulating nicotinamide adenine dinucleotide (NAD) biosynthesis. Following renal ischaemia, Pgc1α(-/-) (also known as Ppargc1a(-/-)) mice develop local deficiency of the NAD precursor niacinamide (NAM, also known as nicotinamide), marked fat accumulation, and failure to re-establish normal function. Notably, exogenous NAM improves local NAD levels, fat accumulation, and renal function in post-ischaemic Pgc1α(-/-) mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulate the effects of NAM supplementation, including more local NAD and less fat accumulation with better renal function after ischaemia. PGC1α coordinately upregulates the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuates the de novo pathway. NAM enhances NAD via the enzyme NAMPT and augments production of the fat breakdown product β-hydroxybutyrate, leading to increased production of prostaglandin PGE2 (ref. 5), a secreted autacoid that maintains renal function. NAM treatment reverses established ischaemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-hydroxybutyrate signalling or prostaglandin production similarly abolishes PGC1α-dependent renoprotection. Given the importance of mitochondrial health in ageing and the function of metabolically active organs, the results implicate NAM and NAD as key effectors for achieving PGC1α-dependent stress resistance.

Citing Articles

SLC29A1 and SLC29A2 are human nicotinamide cell membrane transporters.

Chen M, Yuan L, Chen B, Chang H, Luo J, Zhang H Nat Commun. 2025; 16(1):1181.

PMID: 39885119 PMC: 11782521. DOI: 10.1038/s41467-025-56402-y.


Peroxisome proliferator-activated receptor γ coactivator 1α maintains NAD bioavailability protecting against steatohepatitis.

Shen W, Wan X, Hou J, Liu Z, Mao G, Xu X Life Med. 2025; 1(2):207-220.

PMID: 39871927 PMC: 11749270. DOI: 10.1093/lifemedi/lnac031.


Preoperative leptin levels were associated with postoperative acute kidney injury in patients with acute type A aortic dissection.

Cai M, Jiang F, Peng Y, Li S, Xie Y, Chen L Ren Fail. 2025; 46(2):2433152.

PMID: 39832788 PMC: 11748863. DOI: 10.1080/0886022X.2024.2433152.


Extracellular nicotinamide phosphoribosyltransferase visfatin activates JAK2-STAT3 pathway in cancer-associated fibroblasts to promote colorectal cancer metastasis.

Lei Y, Shu D, Xia J, Zhang T, Wei H Genes Genomics. 2024; .

PMID: 39643827 DOI: 10.1007/s13258-024-01596-6.


Renal Angptl4 is a key fibrogenic molecule in progressive diabetic kidney disease.

Srivastava S, Zhou H, Shenoi R, Morris M, Lainez-Mas B, Goedeke L Sci Adv. 2024; 10(49):eadn6068.

PMID: 39630889 PMC: 11616692. DOI: 10.1126/sciadv.adn6068.


References
1.
Bai P, Canto C, Oudart H, Brunyanszki A, Cen Y, Thomas C . PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 2011; 13(4):461-468. PMC: 3086520. DOI: 10.1016/j.cmet.2011.03.004. View

2.
Pagliarini D, Calvo S, Chang B, Sheth S, Vafai S, Ong S . A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008; 134(1):112-23. PMC: 2778844. DOI: 10.1016/j.cell.2008.06.016. View

3.
Kraus D, Yang Q, Kong D, Banks A, Zhang L, Rodgers J . Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature. 2014; 508(7495):258-62. PMC: 4107212. DOI: 10.1038/nature13198. View

4.
Hanson J, Gille A, Zwykiel S, Lukasova M, Clausen B, Ahmed K . Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice. J Clin Invest. 2010; 120(8):2910-9. PMC: 2912194. DOI: 10.1172/JCI42273. View

5.
Feldkamp T, Kribben A, Roeser N, Senter R, Kemner S, Venkatachalam M . Preservation of complex I function during hypoxia-reoxygenation-induced mitochondrial injury in proximal tubules. Am J Physiol Renal Physiol. 2003; 286(4):F749-59. DOI: 10.1152/ajprenal.00276.2003. View