» Articles » PMID: 26978028

Changes in Retinal Nerve Fiber Layer Reflectance Intensity As a Predictor of Functional Progression in Glaucoma

Overview
Specialty Ophthalmology
Date 2016 Mar 16
PMID 26978028
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: We determined whether longitudinal changes in retinal nerve fiber layer (RNFL) reflectance provide useful prognostic information about longitudinal changes in function in glaucoma.

Methods: The reflectance intensity of each pixel within spectral-domain optical coherence tomography (SD-OCT) circle scans was extracted by custom software. A repeatability cohort comprising 53 eyes of 27 participants (average visual field mean deviation [MD] -1.65 dB) was tested five times within a few weeks. To minimize test-retest variability in their data, a reflectance intensity ratio was defined as the mean reflectance intensity of pixels within the RNFL divided by the mean between the RNFL and RPE. This was measured in a separate longitudinal cohort comprising 310 eyes of 205 participants tested eight times at 6-month intervals (average MD, -0.99 dB; median rate of change, -0.09 dB/y). The rate of change of this ratio, together with the rate of RNFL thinning, and their interaction, were used to predict the rate of change of MD.

Results: In univariate analyses, the rate of RNFL thinning was predictive of the rate of MD change (P < 0.0001), but the rate of change of reflectance intensity ratio was not (P = 0.116). However, in a multivariable model, the interaction between these two rates significantly improved upon predictions of the rate of functional change made using RNFL thickness alone (P = 0.038).

Conclusions: For a given rate of RNFL thinning, a reduction in the RNFL reflectance intensity ratio is associated with more rapid functional deterioration. Incorporating SD-OCT reflectance information may improve the structure-function relation in glaucoma.

Citing Articles

A Hybrid Deep Learning Classification of Perimetric Glaucoma Using Peripapillary Nerve Fiber Layer Reflectance and Other OCT Parameters from Three Anatomy Regions.

Tan O, Greenfield D, Francis B, Varma R, Schuman J, Huang D ArXiv. 2024; .

PMID: 38883241 PMC: 11177947.


Intraday repeatability of macular layers measurements in glaucomatous and non-glaucomatous patients using spectral-domain optical coherence tomography.

Makhmutov V, Adler W, Wawer Matos P, Kopecky A, Nemcansky J, Rokohl A Graefes Arch Clin Exp Ophthalmol. 2024; 262(10):3287-3294.

PMID: 38709301 PMC: 11458698. DOI: 10.1007/s00417-024-06498-7.


Multifunctional adaptive optics optical coherence tomography allows cellular scale reflectometry, polarimetry, and angiography in the living human eye.

Kurokawa K, Nemeth M Biomed Opt Express. 2024; 15(2):1331-1354.

PMID: 38404344 PMC: 10890865. DOI: 10.1364/BOE.505395.


Predicting perimetric defects from en face maps of retinal nerve fibre layer reflectance.

Swanson W, King B, Alluwimi M, Malik R Ophthalmic Physiol Opt. 2024; 44(3):613-625.

PMID: 38404167 PMC: 10999345. DOI: 10.1111/opo.13289.


Deep learning approaches to predict 10-2 visual field from wide-field swept-source optical coherence tomography en face images in glaucoma.

Moon S, Lee J, Choi H, Lee S, Lee J Sci Rep. 2022; 12(1):21041.

PMID: 36471039 PMC: 9722778. DOI: 10.1038/s41598-022-25660-x.


References
1.
Gao W, Jonnal R, Cense B, Kocaoglu O, Wang Q, Miller D . Measuring directionality of the retinal reflection with a Shack-Hartmann wavefront sensor. Opt Express. 2010; 17(25):23085-97. PMC: 3113598. DOI: 10.1364/OE.17.023085. View

2.
Townsend K, Wollstein G, Schuman J . Imaging of the retinal nerve fibre layer for glaucoma. Br J Ophthalmol. 2008; 93(2):139-43. PMC: 2907255. DOI: 10.1136/bjo.2008.145540. View

3.
Knighton R, Huang X . Directional and spectral reflectance of the rat retinal nerve fiber layer. Invest Ophthalmol Vis Sci. 1999; 40(3):639-47. View

4.
Huang X, Zhou Y, Kong W, Knighton R . Reflectance decreases before thickness changes in the retinal nerve fiber layer in glaucomatous retinas. Invest Ophthalmol Vis Sci. 2011; 52(9):6737-42. PMC: 3175984. DOI: 10.1167/iovs.11-7665. View

5.
Jia Y, Wei E, Wang X, Zhang X, Morrison J, Parikh M . Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121(7):1322-32. PMC: 4082728. DOI: 10.1016/j.ophtha.2014.01.021. View