» Articles » PMID: 26960125

Radiation Damage and Derivatization in Macromolecular Crystallography: a Structure Factor's Perspective

Overview
Specialty Biochemistry
Date 2016 Mar 10
PMID 26960125
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

During, or even after, data collection the presence and effects of radiation damage in macromolecular crystallography may not always be immediately obvious. Despite this, radiation damage is almost always present, with site-specific damage occurring on very short time (dose) scales well before global damage becomes apparent. A result of both site-specific radiation damage and derivatization is a change in the relative intensity of reflections. The size and approximate rate of onset of X-ray-induced transformations is compared with the changes expected from derivatization, and strategies for minimizing radiation damage are discussed.

Citing Articles

Guidelines for de novo phasing using multiple small-wedge data collection.

Baba S, Matsuura H, Kawamura T, Sakai N, Nakamura Y, Kawano Y J Synchrotron Radiat. 2021; 28(Pt 5):1284-1295.

PMID: 34475278 PMC: 8415328. DOI: 10.1107/S1600577521008067.


Resolving polymorphs and radiation-driven effects in microcrystals using fixed-target serial synchrotron crystallography.

Ebrahim A, Appleby M, Axford D, Beale J, Moreno-Chicano T, Sherrell D Acta Crystallogr D Struct Biol. 2019; 75(Pt 2):151-159.

PMID: 30821704 PMC: 6400251. DOI: 10.1107/S2059798318010240.


Low-dose fixed-target serial synchrotron crystallography.

Owen R, Axford D, Sherrell D, Kuo A, Ernst O, Schulz E Acta Crystallogr D Struct Biol. 2017; 73(Pt 4):373-378.

PMID: 28375148 PMC: 5379936. DOI: 10.1107/S2059798317002996.


Development of a dose-limiting data collection strategy for serial synchrotron rotation crystallography.

Hasegawa K, Yamashita K, Murai T, Nuemket N, Hirata K, Ueno G J Synchrotron Radiat. 2016; 24(Pt 1):29-41.

PMID: 28009544 PMC: 5182019. DOI: 10.1107/S1600577516016362.


Identification of the point of diminishing returns in high-multiplicity data collection for sulfur SAD phasing.

Storm S, DallAntonia F, Bourenkov G, Schneider T J Synchrotron Radiat. 2016; 24(Pt 1):19-28.

PMID: 28009543 PMC: 5182018. DOI: 10.1107/S1600577516014764.


References
1.
Ravelli R, Theveneau P, McSweeney S, Caffrey M . Unit-cell volume change as a metric of radiation damage in crystals of macromolecules. J Synchrotron Radiat. 2002; 9(Pt 6):355-60. DOI: 10.1107/s0909049502014541. View

2.
Owen R, Paterson N, Axford D, Aishima J, Schulze-Briese C, Ren J . Exploiting fast detectors to enter a new dimension in room-temperature crystallography. Acta Crystallogr D Biol Crystallogr. 2014; 70(Pt 5):1248-56. PMC: 4014120. DOI: 10.1107/S1399004714005379. View

3.
Foadi J, Aller P, Alguel Y, Cameron A, Axford D, Owen R . Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2013; 69(Pt 8):1617-32. PMC: 3727331. DOI: 10.1107/S0907444913012274. View

4.
Olieric V, Ennifar E, Meents A, Fleurant M, Besnard C, Pattison P . Using X-ray absorption spectra to monitor specific radiation damage to anomalously scattering atoms in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2007; 63(Pt 7):759-68. DOI: 10.1107/S0907444907019580. View

5.
Sutton K, Black P, Mercer K, Garman E, Owen R, Snell E . Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies. Acta Crystallogr D Biol Crystallogr. 2013; 69(Pt 12):2381-94. PMC: 3852651. DOI: 10.1107/S0907444913022117. View