» Articles » PMID: 26948273

A Sandwich-type Electrochemical Immunosensor Based on the Biotin- Streptavidin-biotin Structure for Detection of Human Immunoglobulin G

Overview
Journal Sci Rep
Specialty Science
Date 2016 Mar 8
PMID 26948273
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

A sandwich-type immunosensor is designed and fabricated to detect the human immunoglobulin G (HIgG) using polyaniline and tin dioxide functionalized graphene (GS-SnO2-PAN) as the platform and biotin-functionalized amination magnetic nanoparticles composite (B-Fe3O4@APTES) as the label. GS-SnO2-PAN is used as the sensing agent to capture the primary anti-HIgG (Ab1) and SnO2 reduces the stack of GS. The B-Fe3O4@APTES with a large surface area and excellent biocompatibility captures second antibody (Ab2) efficiently based on the highly selective recognition of streptavidin to biotinylated antibody. The B-Fe3O4@APTES has better electro-catalytic activity in the reduction of hydrogen peroxide (H2O2) and the "biotin-streptavidin-biotin" (B-SA-B) strategy leads to signal amplification. Under optimal conditions, the immunosensor has a wide sensitivity range from 1 pg/L to 10 ng/L and low detection limit of 0.33 pg/L (S/N = 3) for HIgG. The immunosensor has high sensitivity, fast assay rate, as well as good reproducibility, specificity, and stability especially in the quantitative detection of biomolecules in serum samples.

Citing Articles

Enhancing Sensitivity and Selectivity: Current Trends in Electrochemical Immunosensors for Organophosphate Analysis.

Shen Y, Zhao S, Chen F, Lv Y, Fu L Biosensors (Basel). 2024; 14(10).

PMID: 39451709 PMC: 11505628. DOI: 10.3390/bios14100496.


Supramolecular Enzymatic Labeling for Aptamer Switch-Based Electrochemical Biosensor.

Villalonga A, Parrado C, Diaz R, Sanchez A, Mayol B, Martinez-Ruiz P Biosensors (Basel). 2022; 12(7).

PMID: 35884317 PMC: 9313153. DOI: 10.3390/bios12070514.


A specific identification platform based on biscuit-like bismuth nanosheets for label-free electrochemical immunosensor.

Song L, Yin X, Zhu L, Huang Z, Ma J, Xu A Anal Sci. 2022; 38(3):571-582.

PMID: 35286646 DOI: 10.1007/s44211-022-00067-w.


Evaluation of click chemistry microarrays for immunosensing of alpha-fetoprotein (AFP).

Dadfar S, Sekula-Neuner S, Trouillet V, Liu H, Kumar R, Powell A Beilstein J Nanotechnol. 2020; 10:2505-2515.

PMID: 31921529 PMC: 6941445. DOI: 10.3762/bjnano.10.241.


Recent Advances in Enhancement Strategies for Electrochemical ELISA-Based Immunoassays for Cancer Biomarker Detection.

Arya S, Estrela P Sensors (Basel). 2018; 18(7).

PMID: 29932161 PMC: 6069457. DOI: 10.3390/s18072010.


References
1.
Engvall E, Perlmann P . Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 1971; 8(9):871-4. DOI: 10.1016/0019-2791(71)90454-x. View

2.
Lin Z, Wang X, Li Z, Ren S, Chen G, Ying X . Development of a sensitive, rapid, biotin-streptavidin based chemiluminescent enzyme immunoassay for human thyroid stimulating hormone. Talanta. 2008; 75(4):965-72. DOI: 10.1016/j.talanta.2007.12.043. View

3.
Yang Z, Shen J, Li J, Zhu J, Hu X . An ultrasensitive streptavidin-functionalized carbon nanotubes platform for chemiluminescent immunoassay. Anal Chim Acta. 2013; 774:85-91. DOI: 10.1016/j.aca.2013.02.041. View

4.
Yang S, Feng X, Ivanovici S, Mullen K . Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew Chem Int Ed Engl. 2010; 49(45):8408-11. DOI: 10.1002/anie.201003485. View

5.
Wang L, Zhang Y, Gao X, Duan Z, Wang S . Determination of chloramphenicol residues in milk by enzyme-linked immunosorbent assay: improvement by biotin-streptavidin-amplified system. J Agric Food Chem. 2010; 58(6):3265-70. DOI: 10.1021/jf903940h. View