» Articles » PMID: 2693944

A.T----C.G Transversions and Their Prevention by the Escherichia Coli MutT and MutHLS Pathways

Overview
Journal Mol Gen Genet
Date 1989 Oct 1
PMID 2693944
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Escherichia coli mutT strains are strong mutators yielding only A.T----C.G transversion mutations. These are thought to result from uncorrected (or unprevented) A.G mispairings during DNA replication. We have investigated the interaction of mutT-induced replication errors with the mutHLS-encoded postreplicative mismatch repair system. By measuring mutation frequencies in both forward and reversion systems, we have demonstrated that mutTmutL and mutTmutS double mutators produce no more mutants than expected from simple additivity of the frequencies in the single mutators. We conclude that mutT-induced A.G replication errors are not recognized by the MutHLS system. On the other hand, direct measurements of mismatch repair by transfection of bacteriophage M13mp2 heteroduplex DNA as well as mutational data from strains other than muT, indicate that the MutHLS system can repair at least certain A.G mispairs. We suggest that A.G mispairs may exist in several different conformations, some of which are recognized by the MutHLS system. However, the A.G mispairs normally prevented by the mutT function are refractory to mismatch repair, indicating that they may represent a structurally distinct class.

Citing Articles

Streptomycin and nalidixic acid elevate the spontaneous genome-wide mutation rate in Escherichia coli.

Ozdemirel H, Ulusal D, Celik S Genetica. 2021; 149(1):73-80.

PMID: 33502702 DOI: 10.1007/s10709-021-00114-w.


Genome adaptive evolution of Lactobacillus casei under long-term antibiotic selection pressures.

Wang J, Dong X, Shao Y, Guo H, Pan L, Hui W BMC Genomics. 2017; 18(1):320.

PMID: 28438179 PMC: 5402323. DOI: 10.1186/s12864-017-3710-x.


Perturbation of iron homeostasis promotes the evolution of antibiotic resistance.

Mehi O, Bogos B, Csorgo B, Pal F, Nyerges A, Papp B Mol Biol Evol. 2014; 31(10):2793-804.

PMID: 25063442 PMC: 4166929. DOI: 10.1093/molbev/msu223.


DNA repair and genome maintenance in Bacillus subtilis.

Lenhart J, Schroeder J, Walsh B, Simmons L Microbiol Mol Biol Rev. 2012; 76(3):530-64.

PMID: 22933559 PMC: 3429619. DOI: 10.1128/MMBR.05020-11.


Role of Escherichia coli DNA polymerase I in chromosomal DNA replication fidelity.

Makiela-Dzbenska K, Jaszczur M, Banach-Orlowska M, Jonczyk P, Schaaper R, Fijalkowska I Mol Microbiol. 2009; 74(5):1114-27.

PMID: 19843230 PMC: 2818720. DOI: 10.1111/j.1365-2958.2009.06921.x.


References
1.
Squires C, Carbon J . Normal and mutant glycine transfer RNAs. Nat New Biol. 1971; 233(43):274-7. DOI: 10.1038/newbio233274a0. View

2.
Hanahan D . Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983; 166(4):557-80. DOI: 10.1016/s0022-2836(83)80284-8. View

3.
Conrad S, DUSSIK K, SIEGEL E . Bacteriophage Mu-1-induced mutation to mutT in Escherichia coli. J Bacteriol. 1976; 125(3):1018-23. PMC: 236179. DOI: 10.1128/jb.125.3.1018-1023.1976. View

4.
Prive G, Heinemann U, Chandrasegaran S, Kan L, Kopka M, DICKERSON R . Helix geometry, hydration, and G.A mismatch in a B-DNA decamer. Science. 1987; 238(4826):498-504. DOI: 10.1126/science.3310237. View

5.
Topal M, Fresco J . Complementary base pairing and the origin of substitution mutations. Nature. 1976; 263(5575):285-9. DOI: 10.1038/263285a0. View