» Articles » PMID: 26920877

Hgc1-Cdc28-how Much Does a Single Protein Kinase Do in the Regulation of Hyphal Development in Candida Albicans?

Overview
Journal J Microbiol
Specialty Microbiology
Date 2016 Feb 28
PMID 26920877
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

The fungal human pathogen Candida albicans can cause invasive infection with high mortality rates. A key virulence factor is its ability to switch between three morphologies: yeast, pseudohyphae and hyphae. In contrast to the ovalshaped unicellular yeast cells, hyphae are highly elongated, tube-like, and multicellular. A long-standing question is what coordinates all the cellular machines to construct cells with distinct shapes. Hyphal-specific genes (HSGs) are thought to hold the answer. Among the numerous HSGs found, only UME6 and HGC1 are required for hyphal development. UME6 encodes a transcription factor that regulates many HSGs including HGC1. HGC1 encodes a G1 cyclin which partners with the Cdc28 cyclin-dependent kinase. Hgc1-Cdc28 simultaneously phosphorylates and regulates multiple substrates, thus controlling multiple cellular apparatuses for morphogenesis. This review is focused on major progresses made in the past decade on Hgc1's roles and regulation in C. albicans hyphal development and other traits important for infection.

Citing Articles

Systematic analysis of the kinome reveals environmentally contingent protein kinase-mediated regulation of filamentation and biofilm formation and .

Kramara J, Kim M, Ollinger T, Ristow L, Wakade R, Zarnowski R mBio. 2024; 15(8):e0124924.

PMID: 38949302 PMC: 11323567. DOI: 10.1128/mbio.01249-24.


Strain variation in gene expression impact of hyphal cyclin Hgc1 in Candida albicans.

Sharma A, Mitchell A G3 (Bethesda). 2023; 13(9).

PMID: 37405402 PMC: 10468301. DOI: 10.1093/g3journal/jkad151.


Hgc1 Independence of Biofilm Hyphae in Candida albicans.

Sharma A, Solis N, Huang M, Lanni F, Filler S, Mitchell A mBio. 2023; 14(2):e0349822.

PMID: 36779720 PMC: 10128054. DOI: 10.1128/mbio.03498-22.


The Antimicrobial Peptide AMP-17 Derived from Inhibits Biofilm Formation and Eradicates Mature Biofilm in .

Sun C, Zhao X, Jiao Z, Peng J, Zhou L, Yang L Antibiotics (Basel). 2022; 11(11).

PMID: 36358129 PMC: 9686669. DOI: 10.3390/antibiotics11111474.


Systematic Metabolic Profiling Identifies Sphingolipid Synthesis as Hypha Associated and Essential for Candida albicans Filamentation.

Garbe E, Gerwien F, Driesch D, Muller T, Bottcher B, Graler M mSystems. 2022; 7(6):e0053922.

PMID: 36264075 PMC: 9765226. DOI: 10.1128/msystems.00539-22.


References
1.
Staab J, Bradway S, Fidel P, Sundstrom P . Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science. 1999; 283(5407):1535-8. DOI: 10.1126/science.283.5407.1535. View

2.
Bruno V, Wang Z, Marjani S, Euskirchen G, Martin J, Sherlock G . Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq. Genome Res. 2010; 20(10):1451-8. PMC: 2945194. DOI: 10.1101/gr.109553.110. View

3.
Nagy G, Hennig G, Petrenyi K, Kovacs L, Pocsi I, Dombradi V . Time-lapse video microscopy and image analysis of adherence and growth patterns of Candida albicans strains. Appl Microbiol Biotechnol. 2014; 98(11):5185-94. DOI: 10.1007/s00253-014-5696-5. View

4.
Sudbery P . Growth of Candida albicans hyphae. Nat Rev Microbiol. 2011; 9(10):737-48. DOI: 10.1038/nrmicro2636. View

5.
Sudbery P, Gow N, Berman J . The distinct morphogenic states of Candida albicans. Trends Microbiol. 2004; 12(7):317-24. DOI: 10.1016/j.tim.2004.05.008. View