Optoelectrical Cooling of Polar Molecules to Submillikelvin Temperatures
Overview
Affiliations
We demonstrate direct cooling of gaseous formaldehyde (H2CO) to the microkelvin regime. Our approach, optoelectrical Sisyphus cooling, provides a simple dissipative cooling method applicable to electrically trapped dipolar molecules. By reducing the temperature by 3 orders of magnitude and increasing the phase-space density by a factor of ∼10(4), we generate an ensemble of 3×10(5) molecules with a temperature of about 420 μK, populating a single rotational state with more than 80% purity.
An optical tweezer array of ultracold polyatomic molecules.
Vilas N, Robichaud P, Hallas C, Li G, Anderegg L, Doyle J Nature. 2024; 628(8007):282-286.
PMID: 38570690 DOI: 10.1038/s41586-024-07199-1.
Ultracold field-linked tetratomic molecules.
Chen X, Biswas S, Eppelt S, Schindewolf A, Deng F, Shi T Nature. 2024; 626(7998):283-287.
PMID: 38297128 PMC: 10849947. DOI: 10.1038/s41586-023-06986-6.
Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule.
Vilas N, Hallas C, Anderegg L, Robichaud P, Winnicki A, Mitra D Nature. 2022; 606(7912):70-74.
PMID: 35650357 DOI: 10.1038/s41586-022-04620-5.
Sub-Doppler Cooling and Compressed Trapping of YO Molecules at K Temperatures.
Ding S, Wu Y, Finneran I, Burau J, Ye J Phys Rev X. 2021; 10(2).
PMID: 33643688 PMC: 7909871. DOI: 10.1103/physrevx.10.021049.
Measuring molecular frequencies in the 1-10 μm range at 11-digits accuracy.
Insero G, Borri S, Calonico D, Cancio Pastor P, Clivati C, DAmbrosio D Sci Rep. 2017; 7(1):12780.
PMID: 28986590 PMC: 5630624. DOI: 10.1038/s41598-017-12891-6.