» Articles » PMID: 26902995

The Structural Basis of Oncogenic Mutations G12, G13 and Q61 in Small GTPase K-Ras4B

Overview
Journal Sci Rep
Specialty Science
Date 2016 Feb 24
PMID 26902995
Citations 90
Authors
Affiliations
Soon will be listed here.
Abstract

Ras mediates cell proliferation, survival and differentiation. Mutations in K-Ras4B are predominant at residues G12, G13 and Q61. Even though all impair GAP-assisted GTP → GDP hydrolysis, the mutation frequencies of K-Ras4B in human cancers vary. Here we aim to figure out their mechanisms and differential oncogenicity. In total, we performed 6.4 μs molecular dynamics simulations on the wild-type K-Ras4B (K-Ras4B(WT)-GTP/GDP) catalytic domain, the K-Ras4B(WT)-GTP-GAP complex, and the mutants (K-Ras4B(G12C/G12D/G12V)-GTP/GDP, K-Ras4B(G13D)-GTP/GDP, K-Ras4B(Q61H)-GTP/GDP) and their complexes with GAP. In addition, we simulated 'exchanged' nucleotide states. These comprehensive simulations reveal that in solution K-Ras4B(WT)-GTP exists in two, active and inactive, conformations. Oncogenic mutations differentially elicit an inactive-to-active conformational transition in K-Ras4B-GTP; in K-Ras4B(G12C/G12D)-GDP they expose the bound nucleotide which facilitates the GDP-to-GTP exchange. These mechanisms may help elucidate the differential mutational statistics in K-Ras4B-driven cancers. Exchanged nucleotide simulations reveal that the conformational transition is more accessible in the GTP-to-GDP than in the GDP-to-GTP exchange. Importantly, GAP not only donates its R789 arginine finger, but stabilizes the catalytically-competent conformation and pre-organizes catalytic residue Q61; mutations disturb the R789/Q61 organization, impairing GAP-mediated GTP hydrolysis. Together, our simulations help provide a mechanistic explanation of key mutational events in one of the most oncogenic proteins in cancer.

Citing Articles

Tumour-agnostic kinase inhibitors.

Adashek J, Nikanjam M, Kurzrock R Nat Rev Drug Discov. 2025; .

PMID: 40050521 DOI: 10.1038/s41573-025-01147-y.


First molecules to reactivate RAS GTPase activity.

Wlodarczyk A, Treda C, Pacholczyk M, Rutkowska A, Wegierska M, Kierasinska-Kalka A BMC Cancer. 2025; 25(1):182.

PMID: 39891136 PMC: 11783748. DOI: 10.1186/s12885-025-13580-8.


Associations of KRAS Point Mutations with Survival of Patients Who Underwent Curative-Intent Resection of Colorectal Liver Metastases.

Maki H, Ayabe R, Haddad A, Nishioka Y, Newhook T, Tran Cao H Ann Surg Oncol. 2025; 32(4):2425-2434.

PMID: 39821490 DOI: 10.1245/s10434-024-16822-4.


Structural Dynamics of Rho GTPases.

Lin Y, Zheng Y J Mol Biol. 2024; 437(3):168919.

PMID: 39708912 PMC: 11757035. DOI: 10.1016/j.jmb.2024.168919.


Insight into structural dynamics involved in activation mechanism of full length KRAS wild type and P-loop mutants.

Jani V, Sonavane U, Joshi R Heliyon. 2024; 10(16):e36161.

PMID: 39247361 PMC: 11379609. DOI: 10.1016/j.heliyon.2024.e36161.


References
1.
Alred E, Scheele E, Berhanu W, Hansmann U . Stability of Iowa mutant and wild type Aβ-peptide aggregates. J Chem Phys. 2014; 141(17):175101. PMC: 4241800. DOI: 10.1063/1.4900892. View

2.
Hall B, Bar-Sagi D, Nassar N . The structural basis for the transition from Ras-GTP to Ras-GDP. Proc Natl Acad Sci U S A. 2002; 99(19):12138-42. PMC: 129411. DOI: 10.1073/pnas.192453199. View

3.
Lu S, Li S, Zhang J . Harnessing allostery: a novel approach to drug discovery. Med Res Rev. 2014; 34(6):1242-85. DOI: 10.1002/med.21317. View

4.
Prior I, Lewis P, Mattos C . A comprehensive survey of Ras mutations in cancer. Cancer Res. 2012; 72(10):2457-67. PMC: 3354961. DOI: 10.1158/0008-5472.CAN-11-2612. View

5.
Cox A, Fesik S, Kimmelman A, Luo J, Der C . Drugging the undruggable RAS: Mission possible?. Nat Rev Drug Discov. 2014; 13(11):828-51. PMC: 4355017. DOI: 10.1038/nrd4389. View