» Articles » PMID: 26898527

Statistical Issues in Testing Conformance with the Quantitative Imaging Biomarker Alliance (QIBA) Profile Claims

Overview
Journal Acad Radiol
Specialty Radiology
Date 2016 Feb 23
PMID 26898527
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

A major initiative of the Quantitative Imaging Biomarker Alliance is to develop standards-based documents called "Profiles," which describe one or more technical performance claims for a given imaging modality. The term "actor" denotes any entity (device, software, or person) whose performance must meet certain specifications for the claim to be met. The objective of this paper is to present the statistical issues in testing actors' conformance with the specifications. In particular, we present the general rationale and interpretation of the claims, the minimum requirements for testing whether an actor achieves the performance requirements, the study designs used for testing conformity, and the statistical analysis plan. We use three examples to illustrate the process: apparent diffusion coefficient in solid tumors measured by MRI, change in Perc 15 as a biomarker for the progression of emphysema, and percent change in solid tumor volume by computed tomography as a biomarker for lung cancer progression.

Citing Articles

Multiparametric MRI and artificial intelligence in predicting and monitoring treatment response in bladder cancer.

Arita Y, Kwee T, Akin O, Shigeta K, Paudyal R, Roest C Insights Imaging. 2025; 16(1):7.

PMID: 39747744 PMC: 11695553. DOI: 10.1186/s13244-024-01884-5.


The QIBA Profile for Dynamic Susceptibility Contrast MRI Quantitative Imaging Biomarkers for Assessing Gliomas.

Shiroishi M, Erickson B, Hu L, Barboriak D, Becerra L, Bell L Radiology. 2024; 313(3):e232555.

PMID: 39656118 PMC: 11694077. DOI: 10.1148/radiol.232555.


Linearity and bias of proton density fat fraction across the full dynamic range of 0-100%: a multiplatform, multivendor phantom study using 1.5T and 3T MRI at two sites.

Hu H, Chen H, Hernando D MAGMA. 2024; 37(4):551-563.

PMID: 38349454 PMC: 11428149. DOI: 10.1007/s10334-024-01148-9.


MRI biomarkers in neuro-oncology.

Smits M Nat Rev Neurol. 2021; 17(8):486-500.

PMID: 34149051 DOI: 10.1038/s41582-021-00510-y.


Transformational Role of Medical Imaging in (Radiation) Oncology.

Coolens C, Gwilliam M, Alcaide-Leon P, de Freitas Faria I, Moraes F Cancers (Basel). 2021; 13(11).

PMID: 34070984 PMC: 8197089. DOI: 10.3390/cancers13112557.


References
1.
Obuchowski N, Reeves A, Huang E, Wang X, Buckler A, Kim H . Quantitative imaging biomarkers: a review of statistical methods for computer algorithm comparisons. Stat Methods Med Res. 2014; 24(1):68-106. PMC: 4263694. DOI: 10.1177/0962280214537390. View

2.
Raunig D, McShane L, Pennello G, Gatsonis C, Carson P, Voyvodic J . Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment. Stat Methods Med Res. 2014; 24(1):27-67. PMC: 5574197. DOI: 10.1177/0962280214537344. View

3.
Barnhart H, Barboriak D . Applications of the repeatability of quantitative imaging biomarkers: a review of statistical analysis of repeat data sets. Transl Oncol. 2009; 2(4):231-5. PMC: 2781067. DOI: 10.1593/tlo.09268. View

4.
Stolk J, Putter H, Bakker E, Shaker S, Parr D, Piitulainen E . Progression parameters for emphysema: a clinical investigation. Respir Med. 2007; 101(9):1924-30. DOI: 10.1016/j.rmed.2007.04.016. View

5.
Kessler L, Barnhart H, Buckler A, Roy Choudhury K, Kondratovich M, Toledano A . The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions. Stat Methods Med Res. 2014; 24(1):9-26. DOI: 10.1177/0962280214537333. View