» Articles » PMID: 26897753

Combined Cerebellar Proton MR Spectroscopy and DWI Study of Patients with Friedreich's Ataxia

Overview
Journal Cerebellum
Publisher Springer
Specialty Neurology
Date 2016 Feb 22
PMID 26897753
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Friedreich's ataxia (FRDA) is the commonest autosomal recessive ataxia, caused by GAA triplet expansion in the frataxin gene. Neuropathological studies in FRDA demonstrate that besides the primary neurodegeneration of the dorsal root ganglia, there is a progressive atrophy of the cerebellar dentate nucleus. Diffusion-weighted imaging (DWI) detected microstructural alterations in the cerebellum of FRDA patients. To investigate the biochemical basis of these alterations, we used both DWI and proton MR spectroscopy (H-MRS) to study the same cerebellar volume of interest (VOI) including the dentate nucleus. DWI and H-MRS study of the left cerebellar hemisphere was performed in 28 genetically proven FRDA patients and 35 healthy controls. In FRDA mean diffusivity (MD) values were calculated for the same H-MRS VOI. Clinical severity was evaluated using the International Cooperative Ataxia Rating Scale (ICARS). FRDA patients showed a significant reduction of N-acetyl-aspartate (NAA), a neuroaxonal marker, and choline (Cho), a membrane marker, both expressed relatively to creatine (Cr), and increased MD values. In FRDA patients NAA/Cr negatively correlated with MD values (r = -0.396, p = 0.037) and with ICARS score (r = -0.669, p < 0.001). Age-normalized NAA/Cr loss correlated with the GAA expansion (r = -0.492, p = 0.008). The reduced cerebellar NAA/Cr in FRDA suggests that neuroaxonal loss is related to the microstructural changes determining higher MD values. The correlation between NAA/Cr and the severity of disability suggests that this biochemical in vivo MR parameter might be a useful biomarker to evaluate therapeutic interventions.

Citing Articles

Bi-allelic variants in SNF8 cause a disease spectrum ranging from severe developmental and epileptic encephalopathy to syndromic optic atrophy.

Brugger M, Lauri A, Zhen Y, Gramegna L, Zott B, Sekulic N Am J Hum Genet. 2024; 111(3):594-613.

PMID: 38423010 PMC: 10940020. DOI: 10.1016/j.ajhg.2024.02.005.


Multiway sparse distance weighted discrimination.

Guo B, Eberly L, Henry P, Lenglet C, Lock E J Comput Graph Stat. 2023; 32(2):730-743.

PMID: 37377729 PMC: 10292743. DOI: 10.1080/10618600.2022.2099404.


Brain Structure and Degeneration Staging in Friedreich Ataxia: Magnetic Resonance Imaging Volumetrics from the ENIGMA-Ataxia Working Group.

Harding I, Chopra S, Arrigoni F, Boesch S, Brunetti A, Cocozza S Ann Neurol. 2021; 90(4):570-583.

PMID: 34435700 PMC: 9292360. DOI: 10.1002/ana.26200.


MR imaging and spectroscopy in degenerative ataxias: toward multimodal, multisite, multistage monitoring of neurodegeneration.

Oz G, Harding I, Krahe J, Reetz K Curr Opin Neurol. 2020; 33(4):451-461.

PMID: 32657886 PMC: 7722013. DOI: 10.1097/WCO.0000000000000834.


Multiple mechanisms underpin cerebral and cerebellar white matter deficits in Friedreich ataxia: The IMAGE-FRDA study.

Selvadurai L, Corben L, Delatycki M, Storey E, Egan G, Georgiou-Karistianis N Hum Brain Mapp. 2020; 41(7):1920-1933.

PMID: 31904895 PMC: 7267947. DOI: 10.1002/hbm.24921.


References
1.
Lodi R, Parchi P, Tonon C, Manners D, Capellari S, Strammiello R . Magnetic resonance diagnostic markers in clinically sporadic prion disease: a combined brain magnetic resonance imaging and spectroscopy study. Brain. 2009; 132(Pt 10):2669-79. PMC: 2759338. DOI: 10.1093/brain/awp210. View

2.
Jenkins B, Rosas H, Chen Y, Makabe T, Myers R, MacDonald M . 1H NMR spectroscopy studies of Huntington's disease: correlations with CAG repeat numbers. Neurology. 1998; 50(5):1357-65. DOI: 10.1212/wnl.50.5.1357. View

3.
Lodi R, Cooper J, Bradley J, Manners D, Styles P, Taylor D . Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci U S A. 1999; 96(20):11492-5. PMC: 18061. DOI: 10.1073/pnas.96.20.11492. View

4.
Della Nave R, Ginestroni A, Giannelli M, Tessa C, Salvatore E, Salvi F . Brain structural damage in Friedreich's ataxia. J Neurol Neurosurg Psychiatry. 2007; 79(1):82-5. DOI: 10.1136/jnnp.2007.124297. View

5.
Calabrese V, Lodi R, Tonon C, DAgata V, Sapienza M, Scapagnini G . Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia. J Neurol Sci. 2005; 233(1-2):145-62. DOI: 10.1016/j.jns.2005.03.012. View