» Articles » PMID: 26892827

Diffusion-weighted Imaging Outside the Brain: Consensus Statement from an ISMRM-sponsored Workshop

Abstract

The significant advances in magnetic resonance imaging (MRI) hardware and software, sequence design, and postprocessing methods have made diffusion-weighted imaging (DWI) an important part of body MRI protocols and have fueled extensive research on quantitative diffusion outside the brain, particularly in the oncologic setting. In this review, we summarize the most up-to-date information on DWI acquisition and clinical applications outside the brain, as discussed in an ISMRM-sponsored symposium held in April 2015. We first introduce recent advances in acquisition, processing, and quality control; then review scientific evidence in major organ systems; and finally describe future directions. J. Magn. Reson. Imaging 2016;44:521-540.

Citing Articles

Potential diagnostic value of high b-value computed diffusion-weighted imaging in hepatocellular carcinoma.

Ablefoni M, Richter T, Leonhardi J, Ehrengut C, Prasse G, Mehdorn M Clin Exp Hepatol. 2025; 10(2):129-136.

PMID: 39845353 PMC: 11748228. DOI: 10.5114/ceh.2024.139651.


Values of apparent diffusion coefficient in pancreatic cancer patients receiving neoadjuvant therapy.

Chen Y, Ma C, Yang P, Mao K, Gao Y, Chen L BMC Cancer. 2024; 24(1):1160.

PMID: 39294623 PMC: 11412028. DOI: 10.1186/s12885-024-12934-y.


A Review on the Use of Imaging Biomarkers in Oncology Clinical Trials: Quality Assurance Strategies for Technical Validation.

Chauvie S, Mazzoni L, ODoherty J Tomography. 2023; 9(5):1876-1902.

PMID: 37888741 PMC: 10610870. DOI: 10.3390/tomography9050149.


Quantitative diffusion-weighted MRI response assessment in rhabdomyosarcoma: an international retrospective study on behalf of the European paediatric Soft tissue sarcoma Study Group Imaging Committee.

Ewijk R, Chatziantoniou C, Adams M, Bertolini P, Bisogno G, Bouhamama A Pediatr Radiol. 2023; 53(12):2539-2551.

PMID: 37682330 PMC: 10635937. DOI: 10.1007/s00247-023-05745-z.


Variabilities in apparent diffusion coefficient (ADC) measurements of the spleen and the paraspinal muscle: A single center large cohort study.

Chen Y, Yang P, Fu C, Bian Y, Shao C, Ma C Heliyon. 2023; 9(7):e18166.

PMID: 37519768 PMC: 10372245. DOI: 10.1016/j.heliyon.2023.e18166.


References
1.
Dyvorne H, Jajamovich G, Kakite S, Kuehn B, Taouli B . Intravoxel incoherent motion diffusion imaging of the liver: optimal b-value subsampling and impact on parameter precision and reproducibility. Eur J Radiol. 2014; 83(12):2109-2113. PMC: 4254063. DOI: 10.1016/j.ejrad.2014.09.003. View

2.
Braithwaite A, Dale B, Boll D, Merkle E . Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology. 2008; 250(2):459-65. DOI: 10.1148/radiol.2502080849. View

3.
Li Q, Li J, Zhang L, Chen Y, Zhang M, Yan F . Diffusion-weighted imaging in assessing renal pathology of chronic kidney disease: A preliminary clinical study. Eur J Radiol. 2014; 83(5):756-62. DOI: 10.1016/j.ejrad.2014.01.024. View

4.
Lee Y, Lee S, Kim N, Kim E, Kim Y, Yun S . Intravoxel incoherent motion diffusion-weighted MR imaging of the liver: effect of triggering methods on regional variability and measurement repeatability of quantitative parameters. Radiology. 2014; 274(2):405-15. DOI: 10.1148/radiol.14140759. View

5.
Thomassin-Naggara I, Toussaint I, Perrot N, Rouzier R, Cuenod C, Bazot M . Characterization of complex adnexal masses: value of adding perfusion- and diffusion-weighted MR imaging to conventional MR imaging. Radiology. 2011; 258(3):793-803. DOI: 10.1148/radiol.10100751. View