Noga M, Jurowski K
Arch Toxicol. 2025; .
PMID: 40050428
DOI: 10.1007/s00204-025-04000-8.
Choi K, Kim J
Food Sci Biotechnol. 2025; 34(2):299-305.
PMID: 39944664
PMC: 11811359.
DOI: 10.1007/s10068-024-01701-1.
Sepehri S, Heymans A, De Win D, Maushagen J, Sanctorum A, Debruyne C
Database (Oxford). 2025; 2025.
PMID: 39879562
PMC: 11776536.
DOI: 10.1093/database/baae121.
Kan H, Wang S, Liao C, Tsai W, Wang C, Tung C
Toxics. 2025; 12(12.
PMID: 39771151
PMC: 11728478.
DOI: 10.3390/toxics12120936.
Singh A, Bhardwaj P, Laux P, Pradeep P, Busse M, Luch A
Front Toxicol. 2024; 6:1461587.
PMID: 39659701
PMC: 11628524.
DOI: 10.3389/ftox.2024.1461587.
Safety evaluation and modulatory effects on innate immune system of pyrazoline-derived compounds.
Goldoni F, Benvenutti L, Nunes R, Vaz C, Garcia L, Furtado K
Naunyn Schmiedebergs Arch Pharmacol. 2024; .
PMID: 39601822
DOI: 10.1007/s00210-024-03653-z.
Computational Strategies for Assessing Adverse Outcome Pathways: Hepatic Steatosis as a Case Study.
Ortega-Vallbona R, Palomino-Schatzlein M, Tolosa L, Benfenati E, Ecker G, Gozalbes R
Int J Mol Sci. 2024; 25(20).
PMID: 39456937
PMC: 11508863.
DOI: 10.3390/ijms252011154.
Computational Tools to Facilitate Early Warning of New Emerging Risk Chemicals.
Tariq F, Ahrens L, Alygizakis N, Audouze K, Benfenati E, Carvalho P
Toxics. 2024; 12(10).
PMID: 39453156
PMC: 11511557.
DOI: 10.3390/toxics12100736.
In Silico Identification of Potential Inhibitors of SARS-CoV-2 Main Protease (M).
Hernandez-Serda M, Vazquez-Valadez V, Aguirre-Vidal P, Markarian N, Medina-Franco J, Cardenas-Granados L
Pathogens. 2024; 13(10).
PMID: 39452758
PMC: 11510711.
DOI: 10.3390/pathogens13100887.
Development, Use, and Validation of (Q)SARs for Predicting Genotoxicity and Carcinogenicity: Experiences from Italian National Institute of Health Activities.
Battistelli C, Bossa C
Methods Mol Biol. 2024; 2834:231-247.
PMID: 39312168
DOI: 10.1007/978-1-0716-4003-6_11.
PharmaBench: Enhancing ADMET benchmarks with large language models.
Niu Z, Xiao X, Wu W, Cai Q, Jiang Y, Jin W
Sci Data. 2024; 11(1):985.
PMID: 39256394
PMC: 11387650.
DOI: 10.1038/s41597-024-03793-0.
Chemical respiratory sensitization-Current status of mechanistic understanding, knowledge gaps and possible identification methods of sensitizers.
Hargitai R, Parrakova L, Szatmari T, Monfort-Lanzas P, Galbiati V, Audouze K
Front Toxicol. 2024; 6:1331803.
PMID: 39135743
PMC: 11317441.
DOI: 10.3389/ftox.2024.1331803.
Low-cost quantum mechanical descriptors for data efficient skin sensitization QSAR models.
Guan D, Lui R, Mattthews S
Curr Res Toxicol. 2024; 7:100183.
PMID: 39021404
PMC: 11253267.
DOI: 10.1016/j.crtox.2024.100183.
Hybrid non-animal modeling: A mechanistic approach to predict chemical hepatotoxicity.
Chung E, Wen X, Jia X, Ciallella H, Aleksunes L, Zhu H
J Hazard Mater. 2024; 471():134297.
PMID: 38677119
PMC: 11519847.
DOI: 10.1016/j.jhazmat.2024.134297.
Predicting the Activity of Unidentified Chemicals in Complementary Bioassays from the HRMS Data to Pinpoint Potential Endocrine Disruptors.
Rahu I, Kull M, Kruve A
J Chem Inf Model. 2024; 64(8):3093-3104.
PMID: 38523265
PMC: 11040721.
DOI: 10.1021/acs.jcim.3c02050.
The estimation of acute oral toxicity (LD) of G-series organophosphorus-based chemical warfare agents using quantitative and qualitative toxicology in silico methods.
Noga M, Michalska A, Jurowski K
Arch Toxicol. 2024; 98(6):1809-1825.
PMID: 38493428
DOI: 10.1007/s00204-024-03714-5.
The acute toxicity of Novichok's degradation products using quantitative and qualitative toxicology in silico methods.
Noga M, Michalska A, Jurowski K
Arch Toxicol. 2024; 98(5):1469-1483.
PMID: 38441627
DOI: 10.1007/s00204-024-03695-5.
In Silico and In Vitro Approach for Evaluation of the Anti-Inflammatory and Antioxidant Potential of Mygalin.
Espinoza-Culupu A, Del Santos N, Farfan-Lopez M, Mendes E, da Silva Junior P, Borges M
Int J Mol Sci. 2023; 24(23).
PMID: 38069341
PMC: 10707111.
DOI: 10.3390/ijms242317019.
The prediction of acute toxicity (LD) for organophosphorus-based chemical warfare agents (V-series) using toxicology in silico methods.
Noga M, Michalska A, Jurowski K
Arch Toxicol. 2023; 98(1):267-275.
PMID: 38051368
PMC: 10761519.
DOI: 10.1007/s00204-023-03632-y.
A benchmark dataset for machine learning in ecotoxicology.
Schur C, Gasser L, Perez-Cruz F, Schirmer K, Baity-Jesi M
Sci Data. 2023; 10(1):718.
PMID: 37853023
PMC: 10584858.
DOI: 10.1038/s41597-023-02612-2.