» Articles » PMID: 26892437

A Highly Active and Stable Hydrogen Evolution Catalyst Based on Pyrite-structured Cobalt Phosphosulfide

Overview
Journal Nat Commun
Specialty Biology
Date 2016 Feb 20
PMID 26892437
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Rational design and controlled synthesis of hybrid structures comprising multiple components with distinctive functionalities are an intriguing and challenging approach to materials development for important energy applications like electrocatalytic hydrogen production, where there is a great need for cost effective, active and durable catalyst materials to replace the precious platinum. Here we report a structure design and sequential synthesis of a highly active and stable hydrogen evolution electrocatalyst material based on pyrite-structured cobalt phosphosulfide nanoparticles grown on carbon nanotubes. The three synthetic steps in turn render electrical conductivity, catalytic activity and stability to the material. The hybrid material exhibits superior activity for hydrogen evolution, achieving current densities of 10 mA cm(-2) and 100 mA cm(-2) at overpotentials of 48 mV and 109 mV, respectively. Phosphorus substitution is crucial for the chemical stability and catalytic durability of the material, the molecular origins of which are uncovered by X-ray absorption spectroscopy and computational simulation.

Citing Articles

Controlled Surface Modification of Cobalt Phosphide with Sulfur Tunes Hydrogenation Catalysis.

Arnosti N, Wyss V, Delley M J Am Chem Soc. 2023; 145(43):23556-23567.

PMID: 37873976 PMC: 10623574. DOI: 10.1021/jacs.3c07312.


Low-temperature synthesis of colloidal few-layer WTe nanostructures for electrochemical hydrogen evolution.

Xie R, Luo W, Zou L, Fan X, Li C, Lv T Discov Nano. 2023; 18(1):44.

PMID: 37382716 PMC: 10214922. DOI: 10.1186/s11671-023-03796-7.


Dopant triggered atomic configuration activates water splitting to hydrogen.

Wu R, Xu J, Zhao C, Su X, Zhang X, Zheng Y Nat Commun. 2023; 14(1):2306.

PMID: 37085504 PMC: 10121564. DOI: 10.1038/s41467-023-37641-3.


Insights into N, P, S multi-doped MoC/C composites as highly efficient hydrogen evolution reaction catalysts.

Xu J, Ge L, Zhou Y, Jiang G, Li L, Li Y Nanoscale Adv. 2022; 2(8):3334-3340.

PMID: 36134296 PMC: 9419526. DOI: 10.1039/d0na00335b.


Solution-phase phosphorus substitution for enhanced oxygen evolution reaction in CuWS.

Novak T, Prakash O, Tiwari A, Jeon S RSC Adv. 2022; 9(1):234-239.

PMID: 35521602 PMC: 9059272. DOI: 10.1039/c8ra09261c.


References
1.
Kibsgaard J, Jaramillo T . Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew Chem Int Ed Engl. 2014; 53(52):14433-7. DOI: 10.1002/anie.201408222. View

2.
Fan Q, Liu W, Weng Z, Sun Y, Wang H . Ternary Hybrid Material for High-Performance Lithium-Sulfur Battery. J Am Chem Soc. 2015; 137(40):12946-53. DOI: 10.1021/jacs.5b07071. View

3.
Yang Y, Fei H, Ruan G, Xiang C, Tour J . Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv Mater. 2014; 26(48):8163-8. DOI: 10.1002/adma.201402847. View

4.
Liechtenstein , Anisimov VI , Zaanen . Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys Rev B Condens Matter. 1995; 52(8):R5467-R5470. DOI: 10.1103/physrevb.52.r5467. View

5.
Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T . Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013; 13(12):6222-7. DOI: 10.1021/nl403661s. View