» Articles » PMID: 26882169

Inter-Protein Sequence Co-Evolution Predicts Known Physical Interactions in Bacterial Ribosomes and the Trp Operon

Overview
Journal PLoS One
Date 2016 Feb 17
PMID 26882169
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Interaction between proteins is a fundamental mechanism that underlies virtually all biological processes. Many important interactions are conserved across a large variety of species. The need to maintain interaction leads to a high degree of co-evolution between residues in the interface between partner proteins. The inference of protein-protein interaction networks from the rapidly growing sequence databases is one of the most formidable tasks in systems biology today. We propose here a novel approach based on the Direct-Coupling Analysis of the co-evolution between inter-protein residue pairs. We use ribosomal and trp operon proteins as test cases: For the small resp. large ribosomal subunit our approach predicts protein-interaction partners at a true-positive rate of 70% resp. 90% within the first 10 predictions, with areas of 0.69 resp. 0.81 under the ROC curves for all predictions. In the trp operon, it assigns the two largest interaction scores to the only two interactions experimentally known. On the level of residue interactions we show that for both the small and the large ribosomal subunit our approach predicts interacting residues in the system with a true positive rate of 60% and 85% in the first 20 predictions. We use artificial data to show that the performance of our approach depends crucially on the size of the joint multiple sequence alignments and analyze how many sequences would be necessary for a perfect prediction if the sequences were sampled from the same model that we use for prediction. Given the performance of our approach on the test data we speculate that it can be used to detect new interactions, especially in the light of the rapid growth of available sequence data.

Citing Articles

Sequence-Based Protein Design: A Review of Using Statistical Models to Characterize Coevolutionary Traits for Developing Hybrid Proteins as Genetic Sensors.

Kinshuk S, Li L, Meckes B, Chan C Int J Mol Sci. 2024; 25(15).

PMID: 39125888 PMC: 11312098. DOI: 10.3390/ijms25158320.


Enhancing coevolutionary signals in protein-protein interaction prediction through clade-wise alignment integration.

Fang T, Szklarczyk D, Hachilif R, von Mering C Sci Rep. 2024; 14(1):6009.

PMID: 38472223 PMC: 10933411. DOI: 10.1038/s41598-024-55655-9.


Coevolution combined with molecular dynamics simulations provides structural and mechanistic insights into the interactions between the integrator complex subunits.

Fongang B, Wadop Y, Zhu Y, Wagner E, Kudlicki A, Rowicka M Comput Struct Biotechnol J. 2023; 21:5686-5697.

PMID: 38074468 PMC: 10700540. DOI: 10.1016/j.csbj.2023.11.022.


Correlations from structure and phylogeny combine constructively in the inference of protein partners from sequences.

Gerardos A, Dietler N, Bitbol A PLoS Comput Biol. 2022; 18(5):e1010147.

PMID: 35576238 PMC: 9135348. DOI: 10.1371/journal.pcbi.1010147.


Large-scale discovery of protein interactions at residue resolution using co-evolution calculated from genomic sequences.

Green A, Elhabashy H, Brock K, Maddamsetti R, Kohlbacher O, Marks D Nat Commun. 2021; 12(1):1396.

PMID: 33654096 PMC: 7925567. DOI: 10.1038/s41467-021-21636-z.


References
1.
Ho Y, Gruhler A, Heilbut A, Bader G, Moore L, Adams S . Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002; 415(6868):180-3. DOI: 10.1038/415180a. View

2.
Yeang C, Haussler D . Detecting coevolution in and among protein domains. PLoS Comput Biol. 2007; 3(11):e211. PMC: 2098842. DOI: 10.1371/journal.pcbi.0030211. View

3.
Galperin M, Koonin E . Who's your neighbor? New computational approaches for functional genomics. Nat Biotechnol. 2000; 18(6):609-13. DOI: 10.1038/76443. View

4.
Lathe 3rd W, Snel B, Bork P . Gene context conservation of a higher order than operons. Trends Biochem Sci. 2000; 25(10):474-9. DOI: 10.1016/s0968-0004(00)01663-7. View

5.
Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y . A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A. 2001; 98(8):4569-74. PMC: 31875. DOI: 10.1073/pnas.061034498. View