Shaughnessy E, Horne B, Huhman K
Brain Behav. 2024; 14(12):e70189.
PMID: 39711016
PMC: 11664038.
DOI: 10.1002/brb3.70189.
Banovac I, Prkacin M, Kirchbaum I, Trnski-Levak S, Bobic-Rasonja M, Sedmak G
Mol Neurobiol. 2024; 62(1):1094-1111.
PMID: 38958887
PMC: 11711633.
DOI: 10.1007/s12035-024-04306-1.
Schreurs B, ODell D, Wang D
Biology (Basel). 2024; 13(3).
PMID: 38534469
PMC: 10968667.
DOI: 10.3390/biology13030200.
Fisher K, Garner J, Darian-Smith C
J Comp Neurol. 2022; 530(17):3039-3055.
PMID: 35973735
PMC: 9561953.
DOI: 10.1002/cne.25395.
Sanchez-Ventura J, Lane M, Udina E
Front Cell Neurosci. 2022; 16:893857.
PMID: 35669108
PMC: 9163449.
DOI: 10.3389/fncel.2022.893857.
Perineuronal Nets and Metal Cation Concentrations in the Microenvironments of Fast-Spiking, Parvalbumin-Expressing GABAergic Interneurons: Relevance to Neurodevelopment and Neurodevelopmental Disorders.
Burket J, Webb J, Deutsch S
Biomolecules. 2021; 11(8).
PMID: 34439901
PMC: 8391699.
DOI: 10.3390/biom11081235.
Disruption of rat deep cerebellar perineuronal net alters eyeblink conditioning and neuronal electrophysiology.
ODell D, Schreurs B, Smith-Bell C, Wang D
Neurobiol Learn Mem. 2020; 177:107358.
PMID: 33285318
PMC: 8279724.
DOI: 10.1016/j.nlm.2020.107358.
Topological atlas of the hypothalamus in adult rhesus monkey.
Wells A, Garcia-Cabezas M, Barbas H
Brain Struct Funct. 2020; 225(6):1777-1803.
PMID: 32556476
PMC: 7321918.
DOI: 10.1007/s00429-020-02093-8.
Reorganization of the Primate Dorsal Horn in Response to a Deafferentation Lesion Affecting Hand Function.
Fisher K, Garner J, Darian-Smith C
J Neurosci. 2020; 40(8):1625-1639.
PMID: 31959698
PMC: 7046332.
DOI: 10.1523/JNEUROSCI.2330-19.2020.
Functional maturation of human neural stem cells in a 3D bioengineered brain model enriched with fetal brain-derived matrix.
Sood D, Cairns D, Dabbi J, Ramakrishnan C, Deisseroth K, Black 3rd L
Sci Rep. 2019; 9(1):17874.
PMID: 31784595
PMC: 6884597.
DOI: 10.1038/s41598-019-54248-1.
WFA-labeled Perineuronal Nets in the Macaque Claustrum.
Pletikos M, Rockland K
Claustrum. 2019; 3(1).
PMID: 31656555
PMC: 6813841.
DOI: 10.1080/20023294.2018.1536104.
Changes in cerebellar intrinsic neuronal excitability and synaptic plasticity result from eyeblink conditioning.
Schreurs B
Neurobiol Learn Mem. 2019; 166:107094.
PMID: 31542329
PMC: 6879800.
DOI: 10.1016/j.nlm.2019.107094.
Loss of interneurons and disruption of perineuronal nets in the cerebral cortex following hypoxia-ischaemia in near-term fetal sheep.
Fowke T, Galinsky R, Davidson J, Wassink G, Karunasinghe R, Prasad J
Sci Rep. 2018; 8(1):17686.
PMID: 30523273
PMC: 6283845.
DOI: 10.1038/s41598-018-36083-y.
Changes in membrane properties of rat deep cerebellar nuclear projection neurons during acquisition of eyeblink conditioning.
Wang D, Smith-Bell C, Burhans L, ODell D, Bell R, Schreurs B
Proc Natl Acad Sci U S A. 2018; 115(40):E9419-E9428.
PMID: 30154170
PMC: 6176574.
DOI: 10.1073/pnas.1808539115.
The Extracellular Environment of the CNS: Influence on Plasticity, Sprouting, and Axonal Regeneration after Spinal Cord Injury.
Quraishe S, Forbes L, Andrews M
Neural Plast. 2018; 2018:2952386.
PMID: 29849554
PMC: 5932463.
DOI: 10.1155/2018/2952386.
Perineuronal Nets in Spinal Motoneurones: Chondroitin Sulphate Proteoglycan around Alpha Motoneurones.
Irvine S, Kwok J
Int J Mol Sci. 2018; 19(4).
PMID: 29649136
PMC: 5979458.
DOI: 10.3390/ijms19041172.
The altered expression of perineuronal net elements during neural differentiation.
Eskici N, Erdem-Ozdamar S, Dayangac-Erden D
Cell Mol Biol Lett. 2018; 23:5.
PMID: 29456557
PMC: 5812217.
DOI: 10.1186/s11658-018-0073-5.
Perineuronal nets labeled by monoclonal antibody VC1.1 ensheath interneurons expressing parvalbumin and calbindin in the rat amygdala.
McDonald A, Hamilton P, Barnstable C
Brain Struct Funct. 2017; 223(3):1133-1148.
PMID: 29094304
PMC: 5871560.
DOI: 10.1007/s00429-017-1542-8.
Differential Expression and Cell-Type Specificity of Perineuronal Nets in Hippocampus, Medial Entorhinal Cortex, and Visual Cortex Examined in the Rat and Mouse.
Lensjo K, Christensen A, Tennoe S, Fyhn M, Hafting T
eNeuro. 2017; 4(3).
PMID: 28593193
PMC: 5461557.
DOI: 10.1523/ENEURO.0379-16.2017.
Chondroitin sulfates and their binding molecules in the central nervous system.
Djerbal L, Lortat-Jacob H, Kwok J
Glycoconj J. 2017; 34(3):363-376.
PMID: 28101734
PMC: 5487772.
DOI: 10.1007/s10719-017-9761-z.