» Articles » PMID: 26866377

Seeing Through Walls at the Nanoscale: Microwave Microscopy of Enclosed Objects and Processes in Liquids

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2016 Feb 12
PMID 26866377
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Noninvasive in situ nanoscale imaging in liquid environments is a current imperative in the analysis of delicate biomedical objects and electrochemical processes at reactive liquid-solid interfaces. Microwaves of a few gigahertz frequencies offer photons with energies of ≈10 μeV, which can affect neither electronic states nor chemical bonds in condensed matter. Here, we describe an implementation of scanning near-field microwave microscopy for imaging in liquids using ultrathin molecular impermeable membranes separating scanning probes from samples enclosed in environmental cells. We imaged a model electroplating reaction as well as individual live cells. Through a side-by-side comparison of the microwave imaging with scanning electron microscopy, we demonstrate the advantage of microwaves for artifact-free imaging.

Citing Articles

Johnson-noise-limited cancellation-free microwave impedance microscopy with monolithic silicon cantilever probes.

Shan J, Morrison N, Chen S, Wang F, Ma E Nat Commun. 2024; 15(1):5043.

PMID: 38871722 PMC: 11176329. DOI: 10.1038/s41467-024-49405-8.


Dielectric Detection of Single Nanoparticles Using a Microwave Resonator Integrated with a Nanopore.

Secme A, Kucukoglu B, Pisheh H, Alatas Y, Tefek U, Uslu H ACS Omega. 2024; 9(7):7827-7834.

PMID: 38405444 PMC: 10882703. DOI: 10.1021/acsomega.3c07506.


Imaging beyond the surface region: Probing hidden materials via atomic force microscopy.

Payam A, Passian A Sci Adv. 2023; 9(26):eadg8292.

PMID: 37379392 PMC: 10306303. DOI: 10.1126/sciadv.adg8292.


Near-Field Probe Microscopy of Plasma Processing.

Tselev A, Fagan J, Kolmakov A Appl Phys Lett. 2022; 113.

PMID: 35023877 PMC: 8752043. DOI: 10.1063/1.5049592.


Infrared-spectroscopic, dynamic near-field microscopy of living cells and nanoparticles in water.

Kaltenecker K, Golz T, Bau E, Keilmann F Sci Rep. 2021; 11(1):21860.

PMID: 34750511 PMC: 8576021. DOI: 10.1038/s41598-021-01425-w.


References
1.
Semenov S, Svenson R, Bulyshev A, Souvorov A, Nazarov A, Sizov Y . Three-dimensional microwave tomography: initial experimental imaging of animals. IEEE Trans Biomed Eng. 2002; 49(1):55-63. DOI: 10.1109/10.972840. View

2.
Betzig E, Trautman J . Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science. 1992; 257(5067):189-95. DOI: 10.1126/science.257.5067.189. View

3.
Chen B, Legant W, Wang K, Shao L, Milkie D, Davidson M . Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science. 2014; 346(6208):1257998. PMC: 4336192. DOI: 10.1126/science.1257998. View

4.
de Jonge N, Ross F . Electron microscopy of specimens in liquid. Nat Nanotechnol. 2011; 6(11):695-704. DOI: 10.1038/nnano.2011.161. View

5.
Gramse G, Dols-Perez A, Edwards M, Fumagalli L, Gomila G . Nanoscale measurement of the dielectric constant of supported lipid bilayers in aqueous solutions with electrostatic force microscopy. Biophys J. 2013; 104(6):1257-62. PMC: 3602784. DOI: 10.1016/j.bpj.2013.02.011. View