» Articles » PMID: 26864300

Structural Complexity of Simple Fe2O3 at High Pressures and Temperatures

Overview
Journal Nat Commun
Specialty Biology
Date 2016 Feb 12
PMID 26864300
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

Although chemically very simple, Fe2O3 is known to undergo a series of enigmatic structural, electronic and magnetic transformations at high pressures and high temperatures. So far, these transformations have neither been correctly described nor understood because of the lack of structural data. Here we report a systematic investigation of the behaviour of Fe2O3 at pressures over 100 GPa and temperatures above 2,500 K employing single crystal X-ray diffraction and synchrotron Mössbauer source spectroscopy. Crystal chemical analysis of structures presented here and known Fe(II, III) oxides shows their fundamental relationships and that they can be described by the homologous series nFeO·mFe2O3. Decomposition of Fe2O3 and Fe3O4 observed at pressures above 60 GPa and temperatures of 2,000 K leads to crystallization of unusual Fe5O7 and Fe25O32 phases with release of oxygen. Our findings suggest that mixed-valence iron oxides may play a significant role in oxygen cycling between earth reservoirs.

Citing Articles

High-pressure synthesis and crystal structure of iron sp-carbonate (Fe[CO]) featuring pyramidal [CO] anions.

Kovalev V, Spahr D, Winkler B, Bayarjargal L, Wedek L, Aslandukova A Commun Chem. 2025; 8(1):66.

PMID: 40044972 PMC: 11883023. DOI: 10.1038/s42004-025-01450-0.


Unveiling pressure-induced anomalous shear behavior and thermoelasticity of FeO hematite at high pressure.

Zou Y, Wang P, Li Y, Chen H, Zhou C, Irifune T iScience. 2025; 28(2):111905.

PMID: 39995866 PMC: 11848791. DOI: 10.1016/j.isci.2025.111905.


Phase relations of bridgmanite, the most abundant mineral in the Earth's lower mantle.

Katsura T Commun Chem. 2025; 8(1):28.

PMID: 39893284 PMC: 11787361. DOI: 10.1038/s42004-024-01389-8.


Iron silicate perovskite and postperovskite in the deep lower mantle.

Yang Z, Song Z, Wu Z, Mao H, Zhang L Proc Natl Acad Sci U S A. 2024; 121(17):e2401281121.

PMID: 38621121 PMC: 11046576. DOI: 10.1073/pnas.2401281121.


High-Pressure and Temperature Effects on the Clustering Ability of Monohydroxy Alcohols.

Grelska J, Temleitner L, Park C, Jurkiewicz K, Pawlus S J Phys Chem Lett. 2024; 15(11):3118-3126.

PMID: 38471115 PMC: 10961836. DOI: 10.1021/acs.jpclett.4c00085.


References
1.
Kantor I, Prakapenka V, Kantor A, Dera P, Kurnosov A, Sinogeikin S . BX90: a new diamond anvil cell design for X-ray diffraction and optical measurements. Rev Sci Instrum. 2013; 83(12):125102. DOI: 10.1063/1.4768541. View

2.
Stagno V, Ojwang D, McCammon C, Frost D . The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature. 2013; 493(7430):84-8. DOI: 10.1038/nature11679. View

3.
Belsky A, Hellenbrandt M, Karen V, Luksch P . New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr B. 2002; 58(Pt 3 Pt 1):364-9. DOI: 10.1107/s0108768102006948. View

4.
Frost D, Liebske C, Langenhorst F, McCammon C, Tronnes R, Rubie D . Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature. 2004; 428(6981):409-12. DOI: 10.1038/nature02413. View

5.
Dobson D, Brodholt J . Subducted banded iron formations as a source of ultralow-velocity zones at the core-mantle boundary. Nature. 2005; 434(7031):371-4. DOI: 10.1038/nature03430. View