» Articles » PMID: 26857547

Kinetic Mechanism and Fidelity of Nick Sealing by Escherichia Coli NAD+-dependent DNA Ligase (LigA)

Overview
Specialty Biochemistry
Date 2016 Feb 10
PMID 26857547
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Escherichia coli DNA ligase (EcoLigA) repairs 3'-OH/5'-PO4 nicks in duplex DNA via reaction of LigA with NAD(+) to form a covalent LigA-(lysyl-Nζ)-AMP intermediate (step 1); transfer of AMP to the nick 5'-PO4 to form an AppDNA intermediate (step 2); and attack of the nick 3'-OH on AppDNA to form a 3'-5' phosphodiester (step 3). A distinctive feature of EcoLigA is its stimulation by ammonium ion. Here we used rapid mix-quench methods to analyze the kinetic mechanism of single-turnover nick sealing by EcoLigA-AMP. For substrates with correctly base-paired 3'-OH/5'-PO4 nicks, kstep2 was fast (6.8-27 s(-1)) and similar to kstep3 (8.3-42 s(-1)). Absent ammonium, kstep2 and kstep3 were 48-fold and 16-fold slower, respectively. EcoLigA was exquisitely sensitive to 3'-OH base mispairs and 3' N:abasic lesions, which elicited 1000- to >20000-fold decrements in kstep2. The exception was the non-canonical 3' A:oxoG configuration, which EcoLigA accepted as correctly paired for rapid sealing. These results underscore: (i) how EcoLigA requires proper positioning of the nick 3' nucleoside for catalysis of 5' adenylylation; and (ii) EcoLigA's potential to embed mutations during the repair of oxidative damage. EcoLigA was relatively tolerant of 5'-phosphate base mispairs and 5' N:abasic lesions.

Citing Articles

Codon usage bias analysis of the gene encoding NAD-dependent DNA ligase protein of Invertebrate iridescent virus 6.

Akturk Dizman Y Arch Microbiol. 2023; 205(11):352.

PMID: 37812231 DOI: 10.1007/s00203-023-03688-5.


Episomal and chromosomal DNA replication and recombination in .

Bhattacharya S Front Mol Biosci. 2023; 10:1212082.

PMID: 37363402 PMC: 10285105. DOI: 10.3389/fmolb.2023.1212082.


Alleviation of C⋅C Mismatches in DNA by the Fpg Protein.

Nigatu Tesfahun A, Alexeeva M, Tomkuviene M, Arshad A, Guragain P, Klungland A Front Microbiol. 2021; 12:608839.

PMID: 34276575 PMC: 8278400. DOI: 10.3389/fmicb.2021.608839.


Cognate base-pair selectivity of hydrophobic unnatural bases in DNA ligation by T4 DNA ligase.

Kimoto M, Soh S, Tan H, Okamoto I, Hirao I Biopolymers. 2020; 112(1):e23407.

PMID: 33156531 PMC: 7900958. DOI: 10.1002/bip.23407.


Two-tiered enforcement of high-fidelity DNA ligation.

Tumbale P, Jurkiw T, Schellenberg M, Riccio A, OBrien P, Williams R Nat Commun. 2019; 10(1):5431.

PMID: 31780661 PMC: 6882888. DOI: 10.1038/s41467-019-13478-7.


References
1.
GUMPORT R, Lehman I . Structure of the DNA ligase-adenylate intermediate: lysine (epsilon-amino)-linked adenosine monophosphoramidate. Proc Natl Acad Sci U S A. 1971; 68(10):2559-63. PMC: 389468. DOI: 10.1073/pnas.68.10.2559. View

2.
Benarroch D, Shuman S . Characterization of mimivirus NAD+-dependent DNA ligase. Virology. 2006; 353(1):133-43. DOI: 10.1016/j.virol.2006.04.032. View

3.
Poidevin L, MacNeill S . Biochemical characterisation of LigN, an NAD+-dependent DNA ligase from the halophilic euryarchaeon Haloferax volcanii that displays maximal in vitro activity at high salt concentrations. BMC Mol Biol. 2006; 7:44. PMC: 1684257. DOI: 10.1186/1471-2199-7-44. View

4.
Zhao X, Muller J, Halasyam M, David S, Burrows C . In vitro ligation of oligodeoxynucleotides containing C8-oxidized purine lesions using bacteriophage T4 DNA ligase. Biochemistry. 2007; 46(12):3734-44. PMC: 2442820. DOI: 10.1021/bi062214k. View

5.
Wang Y, Lamarche B, Tsai M . Human DNA ligase IV and the ligase IV/XRCC4 complex: analysis of nick ligation fidelity. Biochemistry. 2007; 46(17):4962-76. DOI: 10.1021/bi0621516. View