» Articles » PMID: 26857251

Of Pesticides and Men: a California Story of Genes and Environment in Parkinson's Disease

Overview
Date 2016 Feb 10
PMID 26857251
Citations 66
Authors
Affiliations
Soon will be listed here.
Abstract

At the start of the postgenomics era, most Parkinson's disease (PD) etiology cannot be explained by our knowledge of genetic or environmental factors alone. For more than a decade, we have explored gene-environment (GxE) interactions possibly responsible for the heterogeneity of genetic as well as environmental results across populations. We developed three pesticide exposure measures (ambient due to agricultural applications, home and garden use, and occupational use) in a large population-based case-control study of incident PD in central California. Specifically, we assessed interactions with genes responsible for pesticide metabolism (PON1); transport across the blood-brain barrier (ABCB1); pesticides interfering with or depending on dopamine transporter activity (DAT/SLC6A3) and dopamine metabolism (ALDH2); impacting mitochondrial function via oxidative/nitrosative stress (NOS1) or proteasome inhibition (SKP1); and contributing to immune dysregulation (HLA-DR). These studies established some specificity for pesticides' neurodegenerative actions, contributed biologic plausibility to epidemiologic findings, and identified genetically susceptible populations.

Citing Articles

Lewy body diseases and the gut.

Sampson T, Tansey M, West A, Liddle R Mol Neurodegener. 2025; 20(1):14.

PMID: 39885558 PMC: 11783828. DOI: 10.1186/s13024-025-00804-5.


Environmental Risk Factors for Parkinson's Disease: A Critical Review and Policy Implications.

Atterling Brolin K, Schaeffer E, Kuri A, Rumrich I, Schumacher Schuh A, Darweesh S Mov Disord. 2024; 40(2):204-221.

PMID: 39601461 PMC: 11832802. DOI: 10.1002/mds.30067.


Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology.

Currim F, Tanwar R, Brown-Leung J, Paranjape N, Liu J, Sanders L Neurotoxicology. 2024; 103:266-287.

PMID: 38964509 PMC: 11288778. DOI: 10.1016/j.neuro.2024.06.016.


Genome-wide meta-analysis of short-tandem repeats for Parkinson's disease risk using genotype imputation.

Ohlei O, Paul K, Searles Nielsen S, Gmelin D, Dobricic V, Altmann V Brain Commun. 2024; 6(3):fcae146.

PMID: 38863574 PMC: 11166220. DOI: 10.1093/braincomms/fcae146.


Untargeted serum metabolic profiling of diabetes mellitus among Parkinson's disease patients.

Li S, Lin Y, Jones D, Walker D, Folle A, Del Rosario I NPJ Parkinsons Dis. 2024; 10(1):100.

PMID: 38730245 PMC: 11087477. DOI: 10.1038/s41531-024-00711-4.


References
1.
Liu Y, Yang J, Zheng J, Liu D, Liu T, Wang J . Paraoxonase 1 polymorphisms L55M and Q192R were not risk factors for Parkinson's disease: a HuGE review and meta-analysis. Gene. 2012; 501(2):188-92. DOI: 10.1016/j.gene.2012.03.067. View

2.
Rappold P, Cui M, Chesser A, Tibbett J, Grima J, Duan L . Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. Proc Natl Acad Sci U S A. 2011; 108(51):20766-71. PMC: 3251116. DOI: 10.1073/pnas.1115141108. View

3.
Richter R, Jarvik G, Furlong C . Paraoxonase 1 (PON1) status and substrate hydrolysis. Toxicol Appl Pharmacol. 2008; 235(1):1-9. PMC: 3045428. DOI: 10.1016/j.taap.2008.11.001. View

4.
Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper J . SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell. 1996; 86(2):263-74. DOI: 10.1016/s0092-8674(00)80098-7. View

5.
Yoshii S, Kishi C, Ishihara N, Mizushima N . Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem. 2011; 286(22):19630-40. PMC: 3103342. DOI: 10.1074/jbc.M110.209338. View