» Articles » PMID: 26855336

Complementary Subicular Pathways to the Anterior Thalamic Nuclei and Mammillary Bodies in the Rat and Macaque Monkey Brain

Overview
Journal Eur J Neurosci
Specialty Neurology
Date 2016 Feb 9
PMID 26855336
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

The origins of the hippocampal (subicular) projections to the anterior thalamic nuclei and mammillary bodies were compared in rats and macaque monkeys using retrograde tracers. These projections form core components of the Papez circuit, which is vital for normal memory. The study revealed a complex pattern of subicular efferents, consistent with the presence of different, parallel information streams, whose segregation appears more marked in the rat brain. In both species, the cells projecting to the mammillary bodies and anterior thalamic nuclei showed laminar separation but also differed along other hippocampal axes. In the rat, these diencephalic inputs showed complementary topographies in the proximal-distal (columnar) plane, consistent with differential involvement in object-based (proximal subiculum) and context-based (distal subiculum) information. The medial mammillary inputs, which arose along the anterior-posterior extent of the rat subiculum, favoured the central subiculum (septal hippocampus) and the more proximal subiculum (temporal hippocampus). In contrast, anterior thalamic inputs were largely confined to the dorsal (i.e. septal and intermediate) subiculum, where projections to the anteromedial nucleus favoured the proximal subiculum while those to the anteroventral nucleus predominantly arose in the distal subiculum. In the macaque, the corresponding diencephalic inputs were again distinguished by anterior-posterior topographies, as subicular inputs to the medial mammillary bodies predominantly arose from the posterior hippocampus while subicular inputs to the anteromedial thalamic nucleus predominantly arose from the anterior hippocampus. Unlike the rat, there was no clear evidence of proximal-distal separation as all of these medial diencephalic projections preferentially arose from the more distal subiculum.

Citing Articles

Phase Precession Relative to Turning Angle in Theta-Modulated Head Direction Cells.

Ji Z, Lomi E, Jeffery K, Mitchell A, Burgess N Hippocampus. 2025; 35(2):e70008.

PMID: 40071745 PMC: 11898577. DOI: 10.1002/hipo.70008.


Atypical hippocampal excitatory neurons express and govern object memory.

Kinman A, Merryweather D, Erwin S, Campbell R, Sullivan K, Kraus L Nat Commun. 2025; 16(1):1195.

PMID: 39939601 PMC: 11822006. DOI: 10.1038/s41467-025-56260-8.


Convergence of location, direction, and theta in the rat anteroventral thalamic nucleus.

Lomi E, Jeffery K, Mitchell A iScience. 2023; 26(7):106993.

PMID: 37448560 PMC: 10336163. DOI: 10.1016/j.isci.2023.106993.


Hippocampus: Molecular, Cellular, and Circuit Features in Anxiety.

Shi H, Wang S, Wang X, Zhang R, Zhu L Neurosci Bull. 2023; 39(6):1009-1026.

PMID: 36680709 PMC: 10264315. DOI: 10.1007/s12264-023-01020-1.


Neuronal circuitry for recognition memory of object and place in rodent models.

Chao O, Nikolaus S, Yang Y, Huston J Neurosci Biobehav Rev. 2022; 141:104855.

PMID: 36089106 PMC: 10542956. DOI: 10.1016/j.neubiorev.2022.104855.


References
1.
Marfurt C, TURNER D, Adams C . Stabilization of tetramethylbenzidine (TMB) reaction product at the electron microscopic level by ammonium molybdate. J Neurosci Methods. 1988; 25(3):215-23. DOI: 10.1016/0165-0270(88)90136-7. View

2.
Aggleton J, Hunt P, Nagle S, Neave N . The effects of selective lesions within the anterior thalamic nuclei on spatial memory in the rat. Behav Brain Res. 1996; 81(1-2):189-98. DOI: 10.1016/s0166-4328(96)89080-2. View

3.
Aggleton J, Vann S, Saunders R . Projections from the hippocampal region to the mammillary bodies in macaque monkeys. Eur J Neurosci. 2005; 22(10):2519-30. DOI: 10.1111/j.1460-9568.2005.04450.x. View

4.
Meibach R, Siegel A . Thalamic projections of the hippocampal formation: evidence for an alternate pathway involving the internal capsule. Brain Res. 1977; 134(1):1-12. DOI: 10.1016/0006-8993(77)90921-0. View

5.
Veazey R, Amaral D, Cowan W . The morphology and connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). I. Cytoarchitectonic organization. J Comp Neurol. 1982; 207(2):114-34. DOI: 10.1002/cne.902070203. View