Chen X, Wei W, Xiong W, Wu S, Wu Q, Wang P
Int J Mol Sci. 2023; 24(19).
PMID: 37834433
PMC: 10574006.
DOI: 10.3390/ijms241914985.
Bian M, Zhao J, Xu W, Han X, Chen X, Wang P
Int J Mol Sci. 2023; 24(14).
PMID: 37511187
PMC: 10380307.
DOI: 10.3390/ijms241411428.
Tian W, Zhang W, Wang Y, Jin R, Wang Y, Guo H
Front Pharmacol. 2022; 13:982424.
PMID: 36091829
PMC: 9449373.
DOI: 10.3389/fphar.2022.982424.
Jew K, Le V, Amaral K, Ta A, Nguyen May N, Law M
Front Microbiol. 2022; 12:805181.
PMID: 35173693
PMC: 8843374.
DOI: 10.3389/fmicb.2021.805181.
Tian C, Wen B, Bian M, Jin M, Wang P, Xu L
Protein Sci. 2021; 30(12):2396-2407.
PMID: 34647384
PMC: 8605366.
DOI: 10.1002/pro.4204.
Evolution of a key enzyme of aerobic metabolism reveals Proterozoic functional subunit duplication events and an ancient origin of animals.
Santos Bezerra B, Belato F, Mello B, Brown F, Coates C, de Moraes Leme J
Sci Rep. 2021; 11(1):15744.
PMID: 34344935
PMC: 8333347.
DOI: 10.1038/s41598-021-95094-4.
Molecular basis for the function of the αβ heterodimer of human NAD-dependent isocitrate dehydrogenase.
Sun P, Ma T, Zhang T, Zhu H, Zhang J, Liu Y
J Biol Chem. 2019; 294(44):16214-16227.
PMID: 31515270
PMC: 6827300.
DOI: 10.1074/jbc.RA119.010099.
Crystal Structures of the Putative Isocitrate Dehydrogenase from Strain 7 in the Apo and NADP-Bound Forms.
Kondo H, Murakami M
Archaea. 2019; 2018:7571984.
PMID: 30662370
PMC: 6313988.
DOI: 10.1155/2018/7571984.
Gluconeogenic precursor availability regulates flux through the glyoxylate shunt in .
Crousilles A, Dolan S, Brear P, Chirgadze D, Welch M
J Biol Chem. 2018; 293(37):14260-14269.
PMID: 30030382
PMC: 6139552.
DOI: 10.1074/jbc.RA118.004514.
Molecular mechanism of the allosteric regulation of the αγ heterodimer of human NAD-dependent isocitrate dehydrogenase.
Ma T, Peng Y, Huang W, Ding J
Sci Rep. 2017; 7:40921.
PMID: 28098230
PMC: 5241874.
DOI: 10.1038/srep40921.
Isocitrate dehydrogenase mutations in gliomas.
Waitkus M, Diplas B, Yan H
Neuro Oncol. 2015; 18(1):16-26.
PMID: 26188014
PMC: 4677412.
DOI: 10.1093/neuonc/nov136.
Escherichia coli D-malate dehydrogenase, a generalist enzyme active in the leucine biosynthesis pathway.
Vorobieva A, Khan M, Soumillion P
J Biol Chem. 2014; 289(42):29086-96.
PMID: 25160617
PMC: 4200263.
DOI: 10.1074/jbc.M114.595363.
Evolution of a transition state: role of Lys100 in the active site of isocitrate dehydrogenase.
Miller S, Goncalves S, Matias P, Dean A
Chembiochem. 2014; 15(8):1145-53.
PMID: 24797066
PMC: 4389188.
DOI: 10.1002/cbic.201400040.
Structural and Functional analysis of Staphylococcus aureus NADP-dependent IDH and its comparison with Bacterial and Human NADPdependent IDH.
Prasad U, Swarupa V, Yeswanth S, Santhosh Kumar P, Kumar E, Reddy K
Bioinformation. 2014; 10(2):81-6.
PMID: 24616559
PMC: 3937580.
DOI: 10.6026/97320630010081.
Isocitrate dehydrogenase from Streptococcus mutans: biochemical properties and evaluation of a putative phosphorylation site at Ser102.
Wang P, Song P, Jin M, Zhu G
PLoS One. 2013; 8(3):e58918.
PMID: 23484056
PMC: 3590139.
DOI: 10.1371/journal.pone.0058918.
Dimerization and bifunctionality confer robustness to the isocitrate dehydrogenase regulatory system in Escherichia coli.
Dexter J, Gunawardena J
J Biol Chem. 2012; 288(8):5770-8.
PMID: 23192354
PMC: 3581427.
DOI: 10.1074/jbc.M112.339226.
Creating a community resource for protein science.
Berman H
Protein Sci. 2012; 21(11):1587-96.
PMID: 22969036
PMC: 3527698.
DOI: 10.1002/pro.2154.
Induced fit and the catalytic mechanism of isocitrate dehydrogenase.
Goncalves S, Miller S, Carrondo M, Dean A, Matias P
Biochemistry. 2012; 51(36):7098-115.
PMID: 22891681
PMC: 3460525.
DOI: 10.1021/bi300483w.
Regulation and function of protein kinases and phosphatases.
Cheng H, Qi R, Paudel H, Zhu H
Enzyme Res. 2011; 2011:794089.
PMID: 22195276
PMC: 3238372.
DOI: 10.4061/2011/794089.
Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe.
Bulfer S, Hendershot J, Trievel R
Proteins. 2011; 80(2):661-6.
PMID: 22105743
PMC: 4332711.
DOI: 10.1002/prot.23231.