» Articles » PMID: 26783558

IspD (2-C-Methyl-D-erythritol 4-Phosphate Cytidyltransferase), an Essential and Druggable Antimalarial Target

Abstract

As resistance to current therapies spreads, novel antimalarials are urgently needed. In this work, we examine the potential for therapeutic intervention via the targeting of IspD (2-C-methyl-D-erythritol 4-phosphate cytidyltransferase), the second dedicated enzyme of the essential methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis. Enzymes of this pathway represent promising therapeutic targets because the pathway is not present in humans. The Malaria Box compound, MMV008138, inhibits growth, and PfIspD has been proposed as a candidate intracellular target. We find that PfIspD is the sole intracellular target of MMV008138 and characterize the mode of inhibition and target-based resistance, providing chemical validation of this target. Additionally, we find that the genetic locus is refractory to disruption in malaria parasites, providing independent genetic validation for efforts targeting this enzyme. This work provides compelling support for IspD as a druggable target for the development of additional, much-needed antimalarial agents.

Citing Articles

Dissecting apicoplast functions through continuous cultivation of Toxoplasma gondii devoid of the organelle.

Chen M, Koszti S, Bonavoglia A, Maco B, von Rohr O, Peng H Nat Commun. 2025; 16(1):2095.

PMID: 40025025 PMC: 11873192. DOI: 10.1038/s41467-025-57302-x.


Targeting IspD for Anti-infective and Herbicide Development: Exploring Its Role, Mechanism, and Structural Insights.

Willocx D, Diamanti E, Hirsch A J Med Chem. 2025; 68(2):886-901.

PMID: 39749898 PMC: 11770629. DOI: 10.1021/acs.jmedchem.4c01146.


Fragment Discovery by X-Ray Crystallographic Screening Targeting the CTP Binding Site of Pseudomonas Aeruginosa IspD.

Willocx D, DAuria L, Walsh D, Scherer H, Alhayek A, Hamed M Angew Chem Int Ed Engl. 2024; 64(6):e202414615.

PMID: 39676054 PMC: 11796317. DOI: 10.1002/anie.202414615.


Targeting IspD in the Methyl-d-erythritol Phosphate Pathway: Urea-Based Compounds with Nanomolar Potency on Target and Low-Micromolar Whole-Cell Activity.

Willocx D, Bizzarri L, Alhayek A, Kannan D, Bravo P, Illarionov B J Med Chem. 2024; 67(19):17070-17086.

PMID: 39303294 PMC: 11472328. DOI: 10.1021/acs.jmedchem.4c00212.


Antimalarial drug discovery: progress and approaches.

Siqueira-Neto J, Wicht K, Chibale K, Burrows J, Fidock D, Winzeler E Nat Rev Drug Discov. 2023; 22(10):807-826.

PMID: 37652975 PMC: 10543600. DOI: 10.1038/s41573-023-00772-9.


References
1.
Borrmann S, Lundgren I, Oyakhirome S, Impouma B, Matsiegui P, Adegnika A . Fosmidomycin plus clindamycin for treatment of pediatric patients aged 1 to 14 years with Plasmodium falciparum malaria. Antimicrob Agents Chemother. 2006; 50(8):2713-8. PMC: 1538678. DOI: 10.1128/AAC.00392-06. View

2.
Spangenberg T, Burrows J, Kowalczyk P, McDonald S, Wells T, Willis P . The open access malaria box: a drug discovery catalyst for neglected diseases. PLoS One. 2013; 8(6):e62906. PMC: 3684613. DOI: 10.1371/journal.pone.0062906. View

3.
Ashley E, Dhorda M, Fairhurst R, Amaratunga C, Lim P, Suon S . Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014; 371(5):411-23. PMC: 4143591. DOI: 10.1056/NEJMoa1314981. View

4.
Dondorp A, Nosten F, Yi P, Das D, Phyo A, Tarning J . Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009; 361(5):455-67. PMC: 3495232. DOI: 10.1056/NEJMoa0808859. View

5.
Kelley L, Sternberg M . Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc. 2009; 4(3):363-71. DOI: 10.1038/nprot.2009.2. View