» Articles » PMID: 26781075

Establishment of a Rat and Guinea Pig Aortic Interposition Graft Model Reveals Model-specific Patterns of Intimal Hyperplasia

Overview
Journal J Vasc Surg
Publisher Elsevier
Date 2016 Jan 20
PMID 26781075
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Objective: Although the aortic interposition bypass model has been widely used to evaluate biomaterials for bypass grafting, there is no comprehensive description of the procedure or of the distribution of intimal hyperplasia that results. The objectives of this study were to (1) review and summarize approaches of aortic interposition grafting in animal models, (2) determine the pertinent anatomy for this procedure, (3) validate this model in the rat and guinea pig, and (4) compare the distribution of intimal hyperplasia that develops in each species.

Methods: A literature search was performed in PubMed from 1980 to the present to analyze the use of anesthesia, anticoagulation, antiplatelet agents, graft material, suture, and anastomotic techniques. Using 10-week-old male Sprague-Dawley rats and Hartley guinea pigs, we established pertinent aortic anatomy, developed comparable models, and assessed complications for each model. At 30 days, the graft and associated aorta were explanted, intimal formation was assessed morphometrically, and cellularity was assessed via nuclear counting.

Results: We reviewed 30 articles and summarized the pertinent procedural findings. Upon establishing both animal models, key anatomic differences between the species that affect this model were noted. Guinea pigs have a much larger cecum, increased retroperitoneal fat, and lack the iliolumbar vessels compared with the rat. Surgical outcomes for the rat model included a 53% technical success rate and a 32% technical error rate. Surgical outcomes for the guinea pig model included a 69% technical success rate and a 31% technical error rate. These two species demonstrated unique distribution of intimal hyperplasia at 30 days. Intimal hyperplasia in the rat model was greatest at two areas, the proximal graft (5400 μm; P < .001) and distal graft (2800 μm; P < .04), whereas the guinea pig model developed similar intimal hyperplasia throughout the graft (4500-5100 μm; P < .01).

Conclusions: In this report, we summarize the literature on the aortic interposition graft model, present a detailed description of the anatomy and aortic interposition graft procedure in the rat and guinea pig, and describe a unique distribution of intimal formation that results in both species. This information will be helpful when designing studies to evaluate novel graft materials in the future.

Citing Articles

Preliminary Evaluation of a Novel Fetal Guinea Pig Myelomeningocele Model.

Stokes S, Yamashiro K, Vanover M, Galganski L, Jackson J, Theodorou C Biomed Res Int. 2021; 2021:2180883.

PMID: 34423032 PMC: 8378975. DOI: 10.1155/2021/2180883.


Assessment of decellularized pericardial extracellular matrix and poly(propylene fumarate) biohybrid for small-diameter vascular graft applications.

Kimicata M, Allbritton-King J, Navarro J, Santoro M, Inoue T, Hibino N Acta Biomater. 2020; 110:68-81.

PMID: 32305447 PMC: 7294167. DOI: 10.1016/j.actbio.2020.04.013.


Sex Genotyping of Archival Fixed and Immunolabeled Guinea Pig Cochleas.

Depreux F, Czech L, Whitlon D Sci Rep. 2018; 8(1):5156.

PMID: 29581456 PMC: 5980087. DOI: 10.1038/s41598-018-23491-3.


Inhibiting intimal hyperplasia in prosthetic vascular grafts via immobilized all-trans retinoic acid.

Gregory E, Webb A, Vercammen J, Kelly M, Akar B, van Lith R J Control Release. 2018; 274:69-80.

PMID: 29391231 PMC: 5847482. DOI: 10.1016/j.jconrel.2018.01.020.

References
1.
Nieponice A, Soletti L, Guan J, Hong Y, Gharaibeh B, Maul T . In vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model. Tissue Eng Part A. 2009; 16(4):1215-23. PMC: 2862609. DOI: 10.1089/ten.TEA.2009.0427. View

2.
JERVIS H, Sheahan D, SPRINZ H . Acute duodenal ulcerations in the guinea pig due to fasting. Delineation of experimental model. Lab Invest. 1973; 28(4):501-13. View

3.
Soletti L, Nieponice A, Hong Y, Ye S, Stankus J, Wagner W . In vivo performance of a phospholipid-coated bioerodable elastomeric graft for small-diameter vascular applications. J Biomed Mater Res A. 2010; 96(2):436-48. PMC: 3178339. DOI: 10.1002/jbm.a.32997. View

4.
Thaunat O, Louedec L, Graff-Dubois S, Dai J, Groyer E, Yacoub-Youssef H . Antiangiogenic treatment prevents adventitial constrictive remodeling in graft arteriosclerosis. Transplantation. 2008; 85(2):281-9. DOI: 10.1097/TP.0b013e318160500a. View

5.
Wu W, Allen R, Wang Y . Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat Med. 2012; 18(7):1148-53. PMC: 3438366. DOI: 10.1038/nm.2821. View