Application of a Wide-field Phantom Eye for Optical Coherence Tomography and Reflectance Imaging
Overview
Affiliations
Optical coherence tomography (OCT) and reflectance imaging are used in clinical practice to measure the thickness and transverse dimensions of retinal features. The recent trend towards increasing the field of view (FOV) of these devices has led to an increasing significance of the optical aberrations of both the human eye and the device. We report the design, manufacture and application of the first phantom eye that reproduces the off-axis optical characteristics of the human eye, and allows the performance assessment of wide-field ophthalmic devices. We base our design and manufacture on the wide-field schematic eye, [Navarro, R. , .] as an accurate proxy to the human eye and enable assessment of ophthalmic imaging performance for a [Formula: see text] external FOV. We used multi-material 3D-printed retinal targets to assess imaging performance of the following ophthalmic instruments: the Optos 200Tx, Heidelberg Spectralis, Zeiss FF4 fundus camera and Optos and use the phantom to provide an insight into some of the challenges of wide-field OCT.
Three-dimensional bioprinting in ophthalmic care.
Al-Atawi S Int J Ophthalmol. 2023; 16(10):1702-1711.
PMID: 37854366 PMC: 10559024. DOI: 10.18240/ijo.2023.10.21.
Durable 3D murine ex vivo retina glaucoma models for optical coherence tomography.
Barroso A, Ketelhut S, Nettels-Hackert G, Heiduschka P, Amor R, Naranjo V Biomed Opt Express. 2023; 14(9):4421-4438.
PMID: 37791268 PMC: 10545187. DOI: 10.1364/BOE.494271.
Huang X, Anderson T, Dubra A Biomed Opt Express. 2022; 13(7):3786-3808.
PMID: 35991930 PMC: 9352277. DOI: 10.1364/BOE.460553.
Hacker L, Wabnitz H, Pifferi A, Pfefer T, Pogue B, Bohndiek S Nat Biomed Eng. 2022; 6(5):541-558.
PMID: 35624150 DOI: 10.1038/s41551-022-00890-6.
Larochelle R, Mann S, Ifantides C Ophthalmol Ther. 2021; 10(4):733-752.
PMID: 34327669 PMC: 8320416. DOI: 10.1007/s40123-021-00379-6.