» Articles » PMID: 26740737

Application of a Wide-field Phantom Eye for Optical Coherence Tomography and Reflectance Imaging

Overview
Journal J Mod Opt
Date 2016 Jan 8
PMID 26740737
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Optical coherence tomography (OCT) and reflectance imaging are used in clinical practice to measure the thickness and transverse dimensions of retinal features. The recent trend towards increasing the field of view (FOV) of these devices has led to an increasing significance of the optical aberrations of both the human eye and the device. We report the design, manufacture and application of the first phantom eye that reproduces the off-axis optical characteristics of the human eye, and allows the performance assessment of wide-field ophthalmic devices. We base our design and manufacture on the wide-field schematic eye, [Navarro, R. , .] as an accurate proxy to the human eye and enable assessment of ophthalmic imaging performance for a [Formula: see text] external FOV. We used multi-material 3D-printed retinal targets to assess imaging performance of the following ophthalmic instruments: the Optos 200Tx, Heidelberg Spectralis, Zeiss FF4 fundus camera and Optos and use the phantom to provide an insight into some of the challenges of wide-field OCT.

Citing Articles

Three-dimensional bioprinting in ophthalmic care.

Al-Atawi S Int J Ophthalmol. 2023; 16(10):1702-1711.

PMID: 37854366 PMC: 10559024. DOI: 10.18240/ijo.2023.10.21.


Durable 3D murine ex vivo retina glaucoma models for optical coherence tomography.

Barroso A, Ketelhut S, Nettels-Hackert G, Heiduschka P, Amor R, Naranjo V Biomed Opt Express. 2023; 14(9):4421-4438.

PMID: 37791268 PMC: 10545187. DOI: 10.1364/BOE.494271.


Retinal magnification factors at the fixation locus derived from schematic eyes with four individualized surfaces.

Huang X, Anderson T, Dubra A Biomed Opt Express. 2022; 13(7):3786-3808.

PMID: 35991930 PMC: 9352277. DOI: 10.1364/BOE.460553.


Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation.

Hacker L, Wabnitz H, Pifferi A, Pfefer T, Pogue B, Bohndiek S Nat Biomed Eng. 2022; 6(5):541-558.

PMID: 35624150 DOI: 10.1038/s41551-022-00890-6.


3D Printing in Eye Care.

Larochelle R, Mann S, Ifantides C Ophthalmol Ther. 2021; 10(4):733-752.

PMID: 34327669 PMC: 8320416. DOI: 10.1007/s40123-021-00379-6.


References
1.
Pogue B, Patterson M . Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J Biomed Opt. 2006; 11(4):041102. DOI: 10.1117/1.2335429. View

2.
Manivannan A, Plskova J, Farrow A, McKay S, Sharp P, Forrester J . Ultra-wide-field fluorescein angiography of the ocular fundus. Am J Ophthalmol. 2005; 140(3):525-7. DOI: 10.1016/j.ajo.2005.02.055. View

3.
Curatolo A, Kennedy B, Sampson D . Structured three-dimensional optical phantom for optical coherence tomography. Opt Express. 2011; 19(20):19480-5. DOI: 10.1364/OE.19.019480. View

4.
Agrawal A, Chen C, Baxi J, Chen Y, Pfefer T . Multilayer thin-film phantoms for axial contrast transfer function measurement in optical coherence tomography. Biomed Opt Express. 2013; 4(7):1166-75. PMC: 3704096. DOI: 10.1364/BOE.4.001166. View

5.
Mordant D, Al-Abboud I, Muyo G, Gorman A, Sallam A, Rodmell P . Validation of human whole blood oximetry, using a hyperspectral fundus camera with a model eye. Invest Ophthalmol Vis Sci. 2011; 52(5):2851-9. DOI: 10.1167/iovs.10-6217. View