» Articles » PMID: 26740019

Coral Mucus Fuels the Sponge Loop in Warm- and Cold-water Coral Reef Ecosystems

Overview
Journal Sci Rep
Specialty Science
Date 2016 Jan 8
PMID 26740019
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

Citing Articles

Metre-scale vertical zonation of corals and sponges on a deep-marine cliff reflects trophic resource partitioning.

Greenman W, Murillo F, de Moura Neves B, Kenchington E, Jasperse L, Fox A Sci Rep. 2025; 15(1):6750.

PMID: 40000672 PMC: 11861900. DOI: 10.1038/s41598-025-89116-8.


Co-occurring nitrifying symbiont lineages are vertically inherited and widespread in marine sponges.

Glasl B, Luter H, Damjanovic K, Kitzinger K, Mueller A, Mahler L ISME J. 2024; 18(1).

PMID: 38676557 PMC: 11812461. DOI: 10.1093/ismejo/wrae069.


Impacts of humic substances, elevated temperature, and UVB radiation on bacterial communities of the marine sponge Chondrilla sp.

Stuij T, Cleary D, Rocha R, Polonia A, Silva D, Louvado A FEMS Microbiol Ecol. 2024; 100(3).

PMID: 38366951 PMC: 10939426. DOI: 10.1093/femsec/fiae022.


Mass mortality event of the giant barrel sponge sp.: population dynamics and size distribution in Koh Phangan, Gulf of Thailand.

Mueller J, Grammel P, Bill N, Rohde S, Schupp P PeerJ. 2023; 11:e16561.

PMID: 38107566 PMC: 10722979. DOI: 10.7717/peerj.16561.


Respiration kinetics and allometric scaling in the demosponge Halichondria panicea.

Kumala L, Thomsen M, Canfield D BMC Ecol Evol. 2023; 23(1):53.

PMID: 37726687 PMC: 10507823. DOI: 10.1186/s12862-023-02163-5.


References
1.
Tremblay P, Grover R, Maguer J, Legendre L, Ferrier-Pages C . Autotrophic carbon budget in coral tissue: a new 13C-based model of photosynthate translocation. J Exp Biol. 2012; 215(Pt 8):1384-93. DOI: 10.1242/jeb.065201. View

2.
Erftemeijer P, Riegl B, Hoeksema B, Todd P . Environmental impacts of dredging and other sediment disturbances on corals: a review. Mar Pollut Bull. 2012; 64(9):1737-65. DOI: 10.1016/j.marpolbul.2012.05.008. View

3.
Wild C, Huettel M, Klueter A, Kremb S, Rasheed M, Jorgensen B . Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature. 2004; 428(6978):66-70. DOI: 10.1038/nature02344. View

4.
Ribes M, Jimenez E, Yahel G, Lopez-Sendino P, Diez B, Massana R . Functional convergence of microbes associated with temperate marine sponges. Environ Microbiol. 2012; 14(5):1224-39. DOI: 10.1111/j.1462-2920.2012.02701.x. View

5.
Boschker H, Middelburg J . Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol. 2009; 40(2):85-95. DOI: 10.1111/j.1574-6941.2002.tb00940.x. View