» Articles » PMID: 26705698

A Cholinergic Feedback Circuit to Regulate Striatal Population Uncertainty and Optimize Reinforcement Learning

Overview
Journal Elife
Specialty Biology
Date 2015 Dec 27
PMID 26705698
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

Convergent evidence suggests that the basal ganglia support reinforcement learning by adjusting action values according to reward prediction errors. However, adaptive behavior in stochastic environments requires the consideration of uncertainty to dynamically adjust the learning rate. We consider how cholinergic tonically active interneurons (TANs) may endow the striatum with such a mechanism in computational models spanning three Marr's levels of analysis. In the neural model, TANs modulate the excitability of spiny neurons, their population response to reinforcement, and hence the effective learning rate. Long TAN pauses facilitated robustness to spurious outcomes by increasing divergence in synaptic weights between neurons coding for alternative action values, whereas short TAN pauses facilitated stochastic behavior but increased responsiveness to change-points in outcome contingencies. A feedback control system allowed TAN pauses to be dynamically modulated by uncertainty across the spiny neuron population, allowing the system to self-tune and optimize performance across stochastic environments.

Citing Articles

A TAN-dopamine interaction mechanism based computational model of basal ganglia in action selection.

Zhu Q, Han F, Yuan Y, Shen L Cogn Neurodyn. 2024; 18(5):2127-2144.

PMID: 39555280 PMC: 11564715. DOI: 10.1007/s11571-023-10046-0.


A mismatch between striatal cholinergic pauses and dopaminergic reward prediction errors.

Duhne M, Mohebi A, Kim K, Pelattini L, Berke J Proc Natl Acad Sci U S A. 2024; 121(41):e2410828121.

PMID: 39365823 PMC: 11474027. DOI: 10.1073/pnas.2410828121.


The Impact of Continuous and Partial Reinforcement on the Acquisition and Generalization of Human-Conditioned Fear.

Song Y, Zhao S, Rong M, Liu Y, Gao Y, Chen W Behav Sci (Basel). 2024; 14(8).

PMID: 39199026 PMC: 11351138. DOI: 10.3390/bs14080630.


Computational insights on asymmetrical and receptor-mediated chunking: implications for OCD and Schizophrenia.

Szalisznyo K, Silverstein D Cogn Neurodyn. 2024; 18(1):217-232.

PMID: 38406202 PMC: 10881457. DOI: 10.1007/s11571-022-09865-4.


Acetylcholine modulates the precision of prediction error in the auditory cortex.

Perez-Gonzalez D, Lao-Rodriguez A, Aedo-Sanchez C, Malmierca M Elife. 2024; 12.

PMID: 38241174 PMC: 10942646. DOI: 10.7554/eLife.91475.


References
1.
Aisa B, Mingus B, OReilly R . The emergent neural modeling system. Neural Netw. 2008; 21(8):1146-52. DOI: 10.1016/j.neunet.2008.06.016. View

2.
Aosaki T, Kimura M, Graybiel A . Temporal and spatial characteristics of tonically active neurons of the primate's striatum. J Neurophysiol. 1995; 73(3):1234-52. DOI: 10.1152/jn.1995.73.3.1234. View

3.
Ragozzino M, Jih J, Tzavos A . Involvement of the dorsomedial striatum in behavioral flexibility: role of muscarinic cholinergic receptors. Brain Res. 2002; 953(1-2):205-14. DOI: 10.1016/s0006-8993(02)03287-0. View

4.
Bennett B, Wilson C . Spontaneous activity of neostriatal cholinergic interneurons in vitro. J Neurosci. 1999; 19(13):5586-96. PMC: 6782311. View

5.
Aosaki T, Miura M, Suzuki T, Nishimura K, Masuda M . Acetylcholine-dopamine balance hypothesis in the striatum: an update. Geriatr Gerontol Int. 2010; 10 Suppl 1:S148-57. DOI: 10.1111/j.1447-0594.2010.00588.x. View