Cannabinoid Receptor-specific Mechanisms to Alleviate Pain in Sickle Cell Anemia Via Inhibition of Mast Cell Activation and Neurogenic Inflammation
Overview
Affiliations
Sickle cell anemia is a manifestation of a single point mutation in hemoglobin, but inflammation and pain are the insignia of this disease which can start in infancy and continue throughout life. Earlier studies showed that mast cell activation contributes to neurogenic inflammation and pain in sickle mice. Morphine is the common analgesic treatment but also remains a major challenge due to its side effects and ability to activate mast cells. We, therefore, examined cannabinoid receptor-specific mechanisms to mitigate mast cell activation, neurogenic inflammation and hyperalgesia, using HbSS-BERK sickle and cannabinoid receptor-2-deleted sickle mice. We show that cannabinoids mitigate mast cell activation, inflammation and neurogenic inflammation in sickle mice via both cannabinoid receptors 1 and 2. Thus, cannabinoids influence systemic and neural mechanisms, ameliorating the disease pathobiology and hyperalgesia in sickle mice. This study provides 'proof of principle' for the potential of cannabinoid/cannabinoid receptor-based therapeutics to treat several manifestations of sickle cell anemia.
Argueta D, Tran H, Goel Y, Nguyen A, Nguyen J, Kiven S Life Sci Alliance. 2024; 7(11).
PMID: 39242155 PMC: 11381676. DOI: 10.26508/lsa.202402788.
Kim M, Yu K, Yeh C, Fouda R, Argueta D, Kiven S Blood. 2024; 144(10):1101-1115.
PMID: 38976875 PMC: 11406192. DOI: 10.1182/blood.2023023718.
Risks and benefits of cannabis as a pain control modality in patients with sickle cell disease.
Jacobs J, Adkins B, Stephens L, Woo J, Booth G Clin Hematol Int. 2024; 5(4):47-50.
PMID: 38817956 PMC: 10730994. DOI: 10.46989/001c.90837.
Exploring Localized Provoked Vulvodynia: Insights from Animal Model Research.
Nakhleh-Francis Y, Awad-Igbaria Y, Sakas R, Bang S, Abu-Ata S, Palzur E Int J Mol Sci. 2024; 25(8).
PMID: 38673846 PMC: 11050705. DOI: 10.3390/ijms25084261.
Wu M, Xie C, Li X, Sun J, Zhao J, Wang J Front Cell Infect Microbiol. 2024; 14:1358873.
PMID: 38638822 PMC: 11024283. DOI: 10.3389/fcimb.2024.1358873.