» Articles » PMID: 26700507

Unraveling Myelodysplastic Syndromes: Current Knowledge and Future Directions

Overview
Journal Curr Oncol Rep
Publisher Current Science
Specialty Oncology
Date 2015 Dec 25
PMID 26700507
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Myelodysplastic syndromes (MDS) affect more than 30,000 patients in the USA per year, most of whom are elderly, and these diseases are associated with dismal prognoses. The main features of MDS are ineffective hematopoiesis and aberrant myeloid differentiation. Furthermore, MDS are heterogeneous, both clinically and molecularly. This heterogeneity and the frequent occurrence of age-related comorbidities make the management of these diseases challenging. In fact, there have been no new drug approvals for MDS in the USA in the last 9 years, and few currently available investigational drugs are likely to be approved in the near future. Novel targeted treatment based on better understanding of the pathogenesis of MDS is needed to maximize patient outcomes. Here, we discuss new insights into diagnostic accuracy, prognostic assessment, pathogenic mechanisms, and effective treatments for MDS.

Citing Articles

Functional polymorphisms of DNA repair genes in Latin America reinforces the heterogeneity of Myelodysplastic Syndrome.

de Paula Borges D, Dos Santos R, Velloso E, Ribeiro Junior H, Larripa I, Camacho M Hematol Transfus Cell Ther. 2021; 45(2):147-153.

PMID: 34544665 PMC: 10244233. DOI: 10.1016/j.htct.2021.08.002.


Differential sensitivity of acute myeloid leukemia cells to daunorubicin depends on P2X7A versus P2X7B receptor expression.

Pegoraro A, Orioli E, De Marchi E, Salvestrini V, Milani A, Di Virgilio F Cell Death Dis. 2020; 11(10):876.

PMID: 33071281 PMC: 7569086. DOI: 10.1038/s41419-020-03058-9.


Contribution of Aberrant Toll Like Receptor Signaling to the Pathogenesis of Myelodysplastic Syndromes.

Paracatu L, Schuettpelz L Front Immunol. 2020; 11:1236.

PMID: 32625214 PMC: 7313547. DOI: 10.3389/fimmu.2020.01236.


Genetics and epigenetics of leukemia and lymphoma: from knowledge to applications, meeting report of the Josep Carreras Leukaemia Research Institute.

Parra M, Baptista M, Genesca E, Llinas-Arias P, Esteller M Hematol Oncol. 2020; 38(4):432-438.

PMID: 32073154 PMC: 7687178. DOI: 10.1002/hon.2725.


The orphan nuclear receptor EAR-2 (NR2F6) inhibits hematopoietic cell differentiation and induces myeloid dysplasia in vivo.

Ichim C, Dervovic D, Chan L, Robertson C, Chesney A, Reis M Biomark Res. 2018; 6:36.

PMID: 30555701 PMC: 6286615. DOI: 10.1186/s40364-018-0149-4.


References
1.
Steensma D . Historical perspectives on myelodysplastic syndromes. Leuk Res. 2012; 36(12):1441-52. DOI: 10.1016/j.leukres.2012.08.007. View

2.
Ross M, Wakefield J, Davis S, De Roos A . Spatial clustering of myelodysplastic syndromes (MDS) in the Seattle-Puget Sound region of Washington State. Cancer Causes Control. 2010; 21(6):829-38. PMC: 3196606. DOI: 10.1007/s10552-010-9509-6. View

3.
Garcia-Manero G, Gore S, Cogle C, Ward R, Shi T, MacBeth K . Phase I study of oral azacitidine in myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia. J Clin Oncol. 2011; 29(18):2521-7. PMC: 3675699. DOI: 10.1200/JCO.2010.34.4226. View

4.
Fenaux P, Giagounidis A, Selleslag D, Beyne-Rauzy O, Mufti G, Mittelman M . A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with Low-/Intermediate-1-risk myelodysplastic syndromes with del5q. Blood. 2011; 118(14):3765-76. DOI: 10.1182/blood-2011-01-330126. View

5.
Fenaux P, Mufti G, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A . Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009; 10(3):223-32. PMC: 4086808. DOI: 10.1016/S1470-2045(09)70003-8. View